首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

3.
The diurnal variations in mRNA quantities of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase, malic enzyme and glucose-6-phosphate dehydrogenase) in rat livers were detected. When the rats began feeding actively after lights out at 1900 h, the mRNA quantities were high from 0500 h to 0900 h in the morning. The variation in fatty acid synthase mRNA quantities was the most dramatic. However, no measurable variation in any enzyme levels including fatty acid synthase was detected. It may be because the half-lives of the enzymes are too long to be effected by the mRNAs which were high for several hours.  相似文献   

4.
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.  相似文献   

5.
6.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

7.
8.
Although lipogenic enzyme inductions are reduced by fat feeding, this reduction decreases with aging and is particularly detectable in the case of acetyl-CoA carboxylase and fatty acid synthetase activities. On the other hand, the fat-dependent reductions of malic enzyme and acetyl-CoA carboxylase were consistently relieved by triiodothyronine (T3) treatment. The effects of T3 treatment on these enzyme inductions were greater in 10-month-old rats than in 1-month-old rats, while the carbohydrate-dependent induction and the fat-dependent reduction of the enzymes decreased with aging. In these animals, alterations in malic enzyme mRNA translational activities were roughly in parallel to the enzyme activities. Therefore, the age-dependent alterations in effects of T3 treatment and fat on malic enzyme induction do not appear to occur in post-translation.  相似文献   

9.
10.
The relative amounts of mRNAs coding for fatty-acid synthase (EC 2.3.1.85), acetyl-CoA carboxylase (EC 6.4.1.2), ATP citrate lyase (EC 4.1.3.8) and malic enzyme (EC 1.1.1.40) were determined in lungs and livers of adult rats that were normally fed, starved for 48 h or starved for 48 h and subsequently refed for 72 h with a carbohydrate-rich, fat-free diet. In the liver, starvation caused a small decrease in the relative abundance of the mRNAs which was not statistically significant. Subsequent refeeding caused a statistically significant increase in mRNAs for all of the enzymes studied. In the lung, no significant changes were found, indicating that the regulation of the abundance of mRNAs encoding the lipogenic enzymes in the lung differs from that in the liver. In the developing rat lung, mRNA for fatty-acid synthase increased 3-fold in abundance between fetal days 18 and 20 and decreased directly after birth (at day 22 of gestation). A similar pattern was observed for ATP citrate lyase mRNA. The level of acetyl-CoA carboxylase mRNA decreased significantly after birth. These observations indicate that in perinatal rat lungs, pretranslational regulation is involved in the control of the synthesis of these enzymes. The abundance of acetyl-CoA carboxylase mRNA did not change in the prenatal period, a time during which the specific activity of this enzyme increases. This lack of correlation between the specific activity of acetyl-CoA carboxylase and the abundance of its mRNA may indicate that translational regulation of the synthesis of the enzyme or post-synthetic regulatory effects on enzyme molecules are involved in the control of this enzyme in the prenatal period. No changes in the abundance of lung malic enzyme mRNAs were observed throughout the perinatal period.  相似文献   

11.
Effect of prior nutritional status of the animal on the activity of lipogenic enzymes and the fatty acid content of cultured hepatocytes was investigated. Hepatocytes were isolated from rats that were starved for 24 h ('starved') or continuously fed ('fed'), or starved for 48 h and then re-fed for 48 h ('re-fed') with a carbohydrate-rich fat-free diet, and maintained as monolayer cultures for 96 h in a serum-free glucose-rich medium (Waymouth's MB752/1) supplemented with insulin, dexamethasone and tri-iodothyronine. The fatty acid content and the activities of acetyl-CoA carboxylase, fatty acid synthase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were determined initially at 3 h after plating and then every 24 h. Initially the activities of all the four enzymes were highest in hepatocytes isolated from the re-fed rats and lowest in those from the starved rats. With time in culture, the activity of all these enzymes increased severalfold (2-5, depending on the enzyme under consideration) in hepatocytes isolated from fed and starved rats, whereas there was a severalfold (2-5) decrease in the activity of these enzymes in hepatocytes isolated from re-fed rats. The initial fatty acid content of the hepatocytes from re-fed rats was 2-3 times that in the other two groups of hepatocytes. The fatty acid content seemed to increase in all three groups of hepatocytes during the 96 h in culture, but these apparent increases were not statistically significant.  相似文献   

12.
Triiodothyronine (T (3)) is known to increase liver lipogenic enzyme gene expression both in vivo and in tissue culture. Conflicting results have been reported on the effect of T (3) on lipogenic enzyme gene expression in white adipose tissue. The results presented in this paper indicate that administration of pharmacological doses of T (3) in rats leads to increased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL) and malic enzyme (ME) activity in white adipose tissue. The increase in lipogenic enzyme activity was associated with increased FAS, ACC, ACL and ME mRNA levels. The response was dose-dependent. Activity of lipogenic enzyme and the lipogenic enzyme mRNA levels were positively correlated to serum T (3) concentration. The in vivo effect of T (3) on lipogenic enzyme gene expression could be reproduced in primary white rat adipocyte culture. In conclusion, the results presented in this paper indicate that T (3) exerts a stimulatory effect on lipogenic enzyme gene expression in white adipose tissue both in vivo and in tissue culture. Significant effects of T (3) on lipogenic enzyme gene expression were only observed in the presence of relatively high (pharmacological) concentrations of the hormone.  相似文献   

13.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

14.
15.
Acetyl-coenzyme A carboxylase from Euglena gracilis strain Z was isolated as a component of a multienzyme complex which includes phosphoenolpyruvate carboxylase and malate dehydrogenase. The multienzyme complex was shown to exist in crude extracts and was purified to a homogeneous protein with a molecular weight of 360,000 by gel filtration. The ratio of the activities of the constituent enzymes was acetyl-CoA carboxylase:phosphoenolpyruvate carboxylase:malate dehydrogenase, 1:25:500. The complex is proposed to operate in conjunction with malic enzyme, which is present in Euglena, to facilitate the formation of substrates, malonyl-CoA, and NADPH, for fatty acid biosynthesis. The interaction of the enzymes may represent a means of control of acetyl-CoA carboxylase activity in organisms which do not possess an enzyme subject to allosteric regulation. The acetyl-CoA carboxylase activity from Euglena is unaffected by citrate and isocitrate.  相似文献   

16.
Using primary cultures of adult rat hepatocytes, the regulation of the following lipogenic enzymes was studied: glucose-6-phosphate dehydrogenase, malic enzyme, ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase, and stearoyl-CoA desaturase. The addition to the culture medium of either insulin or triiodothyronine produced a 2-3-fold increase in each of the individual enzyme activities whereas glucagon slightly decreased enzyme activities. The addition to the medium of 8-bromoguanosine 3,'5'-monophosphate had no effect on any of the enzyme activities unless glucose was also added to the culture medium. Glucose addition alone to the culture medium was without any effect; however, glucose enhanced the stimulation of enzyme activity due to insulin. The addition of fructose or glycerol, even in the absence of insulin, increased the activities of each of the enzymes studied 2-3-fold. The increases in enzyme activity brought about by insulin or fructose were apparently the result of de novo enzyme synthesis, as indicated by the observation that the increases were not noted in the presence of cordycepin or cycloheximide. Immunoprecipitation of ATP-citrate lyase from hepatocytes pulse-labeled with [3H]leucine indicated that the induction of this enzyme in response to the addition of fructose or glycerol to the culture medium was the result of an increase in the rate of synthesis of the enzyme. These results indicate that the activity and synthesis of individual enzymes involved in lipogenesis are increased in response to the metabolism of carbohydrate independently in part from hormonal effects.  相似文献   

17.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

18.
19.
1. Measurements have been made of the activities of acyl-CoA dehydrogenase, enoyl-CoA hydratase, beta-hydroxyacyl-CoA dehydrogenase and ketothiolase in the livers of rats treated for either 12hr. or 3 days with pituitary growth hormone. 2. There was a significant increase in the activity of acyl-CoA dehydrogenase in rats treated with the hormone for 3 days. 3. Measurements were also made of the lipogenic enzymes acetyl-CoA carboxylase and palmitate synthase in the livers of similarly treated animals. 4. There was a depression of the activity of both enzymes after 12hr. treatment and a further decline after 3 days. 5. The results are discussed in relation to the known increase in the rate of fatty acid oxidation and inhibition of fatty acid synthesis in rats treated with growth hormone.  相似文献   

20.
Various inorganic and organic nitrogen sources were used to compare their effects on the lipogenesis and the activities of lipogenic enzymes (providing acetyl-CoA and donating NADPH) in gamma-linolenic acid-producing fungus Cunninghamella echinulata. Lipid accumulation was enhanced by organic nitrogen, among them the presence of corn-steep led to almost 40% oil in the biomass. While organic nitrogen increased activities of acetyl-CoA carboxylase (ACC) and malic enzyme (ME), ATP:citrate lyase (ACL) was rapidly enhanced by ammonium ion. The use of NaNO(3) resulted in high activities of glucose 6-phosphate dehydrogenase (GPD) and 6-phosphogluconate dehydrogenase (PGD). NADP-isocitrate dehydrogenase (NADP-ICD) was more active when the fungus utilized all inorganic N-compounds. The rise of nitrogen concentration in medium was accompanied with reduced lipid accumulation and a fall of ACL, ACC, and ME. In contrast, N-sufficient conditions favored biomass growth and elevated activities of GPD and PGD. Kinetic experiments also suggest that a significant portion of the required acetyl-CoA was being provided via ACL and ACC, and ME (probably coupled with GPD) channeled the NADPH into the fatty acid biosynthesis. The contribution of the lipogenic enzymes to metabolic pathways other than lipogenesis is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号