首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
Water-stressed maize (Zea mays L.) leaves showed a large decrease in leaf conductance during photosynthesis. Net CO2 uptake and evaporation declined fast at mild stress (=–0.6 to –1.0 MPa) and slower at more severe stress (=–1.0 to -1.2 MPa), whereas the CO2 concentration in the intercellular spaces (Ci) did not drop to the CO2 compensation point. The activities of the enzymes of photosynthetic carbon metabolism tested in this study dropped by approx. 30% at =-1.2 MPa. Glutamine synthetase activity was unaffected by water stress, whereas the activity of nitrate reductase was almost completely inhibited. The decline of enzyme activities in relation to was correlated with a concomitant decrease in the content of total soluble protein of the stressed leaves. The total leaf pools of malate, pyruvate and oxaloacetate decreased almost linearly in relation to , thus obviously contradicting the almost constant Ci. In comparison to the controls (=0.6 MPa) the content of citrate and isocitrate increaed markedly at =-0.9 MPa and decreased again at =-1.2 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PEP phosphoenolypyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

2.
The effect of water deficit on nodulation, N2 fixation, photosynthesis, and total soluble sugars and leghemoglobin in nodules was investigated in cowpea and groundnut. Nitrogenase activity completely ceased in cowpea with a decrease in leaf water potential ( leaf) from –0.4 MPa to –0.9 MPa, while in groundnut it continued down to –1.7 MPa. With increasing water stress, the acetylene reduction activity (ARA) declined very sharply in cowpea, but ARA gradually decreased in groundnut. Even with mild water stress ( leaf of 0.2 MPa), nodule fresh weight declined 50% in cowpea partly due to a severe nodule shedding whereas nodule fresh weight declined in groundnut only when leaf decreased by 1.0 MPa. No nodule shedding was noticed even at a higher stress level in groundnut. Photosynthesis and stomatal conductance were also more stable in groundnut than in cowpea under water stress. There was a sharp increase in total soluble sugars and leghemoglobin in the nodules of groundut with water stress, but no definite trend could be found in cowpea.  相似文献   

3.
Gas exchange in Gossypium hirsutum L. cv. H-777 as affected by water deficit and growth regulators (IAA, GA3, BAP, ABA, ethrel) was examined. Sixty days after sowing, growth regulators in concentration 50 µM were applied as foliar spray and irrigation was withheld to get desired (moderate and severe) water deficit. All the parameters were measured on the third leaf from the top between 10:00 and 11:00. Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), carboxylation efficiency (CE), and water potential (w) decreased significantly with the increasing water stress, however, water use efficiency (WUE) was unaffected. Foliar spray with IAA, GA3 and BAP partially counteracted the effect of water deficit on the above parameters except w, which became more negative. ABA and up to some extent ethrel increased WUE and maintained higher w, however, caused further decrease in PN, E, and gs.  相似文献   

4.
Imad N. Saab  Robert E. Sharp 《Planta》1989,179(4):466-474
Conditions of soil drying and plant growth that lead to non-hydraulic inhibition of leaf elongation and stomatal conductance in maize (Zea mays L.) were investigated using plants grown with their root systems divided between two containers. The soil in one container was allowed to dry while the other container was kept well-watered. Soil drying resulted in a maximum 35% inhibition of leaf elongation rate which occurred during the light hours, with no measurable decline in leaf water potential (w). Leaf area was 15% less than in control plants after 18 d of soil drying. The inhibition of elongation was observed only when the soil w declined to below that of the leaves and, thus, the drying soil no longer contributed to transpiration. However, midday root w in the dry container (-0.29 MPa) remained much higher than that of the surrounding soil (-1.0 MPa) after 15 d of drying, indicating that the roots in drying soil were rehydrated in the dark.To prove that the inhibition of leaf elongation was not caused by undetectable changes in leaf water status as a result of loss of half the watergathering capacity, one-half of the root system of control plants was excised. This treatment had no effect on leaf elongation or stomatal conductance. The inhibition of leaf elongation was also not explained by reductions in nutrient supply.Soil drying had no effect on stomatal conductance despite variations in the rate or extent of soild drying, light, humidity or nutrition. The results indicate that non-hydraulic inhibition of leaf elongation may act to conserve water as the soil dries before the occurrence of shoot water deficits.Symbol w water potential Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 10881  相似文献   

5.
Mature leaves of Phaseolus vulgaris L. (red kidney bean), Xanthium strumarium L. (cocklebur), and Gossypium hirsutum L. (cotton) were used to study accumulation of abscisic acid (ABA) during water stress. The water status of individual, detached leaves was monitored while the leaves slowly wilted, and samples were cut from the leaves as they lost water. The leaf sections were incubated at their respecitive water contents to allow ABA to build up or not. At least 8 h were required for a new steady-state level of ABA to be established. The samples from any one leaf covered a range of known water potentials (), osmotic pressures (), and turgor pressures (p). The and p values were calculated from pressure-volume curves, using a pressure bomb to measure the water potentials. Decreasing water potential had little effect on ABA levels in leaves at high turgor. Sensitivity of the production of ABA to changes in progressively increased as turgor approached zero. At p=1 bar, ABA content averaged 4 times the level found in fully turgid samples. Below p=1 bar, ABA content increased sharply to as much as 40 times the level found in unstressed samples. ABA levels rose steeply at different water potentials for different leaves, according to the at which turgor became zero. These differences were caused by the different osmotic pressures of the leaves that were used; must cqual - for turgor to be zero. Leaves vary in , not only among species, but also between plants of one and the same species depending on the growing conditions. A difference of 6 bars (calculated at =0) was found between the osmotic pressures of leaves from two groups of G. hirsutum plants; one group had previously experienced periodic water stress, and the other group had never been stressed. When individual leaves were subsequently wilted, the leaves from stress-conditioned plants required a lower water potential in order to accumulate ABA than did leaves from previously unstressed plants. On the basis of these results we suggest that turgor is the critical parameter of plant water relations which controls ABA production in water-stressed leaves.Abbreviations ABA abscisic acid - me-ABA abscisic-acid methyl ester - leaf water potential - osmotic pressure - p volumeaveraged turgor - volumetric modulus of elasticity  相似文献   

6.
Wu Y  Jeong BR  Fry SC  Boyer JS 《Planta》2005,220(4):593-601
In dark-grown soybean (Glycine max [L.] Merr.) seedlings, exposing the roots to water-deficient vermiculite (w=–0.36 MPa) inhibited hypocotyl (stem) elongation. The inhibition was associated with decreased extensibility of the cell walls in the elongation zone. A detailed spatial analysis showed xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity on the basis of unit cell wall dry weight was decreased in the elongation region after seedlings were transplanted to low w. The decrease in XET activity was at least partially due to an accumulation of cell wall mass. Since cell number was only slightly altered, wall mass had increased per cell and probably led to increased wall thickness and decreased cell wall extensibility. Alternatively, an increase in cell wall mass may represent a mechanism for regulating enzyme activity in cell walls, XET in this case, and therefore cell wall extensibility. Hypocotyl elongation was partially recovered after seedlings were grown in low-w vermiculate for about 80 h. The partial recovery of hypocotyl elongation was associated with a partial recovery of cell wall extensibility and an enhancement of XET activity in the hypocotyl elongation zone. Our results indicate XTH proteins may play an important role in regulating cell wall extensibility and thus cell elongation in soybean hypocotyls. Our results also showed an imperfect correlation of spatial elongation and XET activity along the hypocotyls. Other potential functions of XTH and their regulation in soybean hypocotyl growth are discussed.  相似文献   

7.
Net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) during water stress and after rehydration were measured in Phaseolus vulgaris, Beta vulgaris, and Zea mays. Immediately before imposition of water stress by cessation of watering, plants were irrigated with water (control), 100 M abscisic acid (ABA), and/or 10 M N6-benzyladenine (BA). In all three species, application of ABA decreased gs, E, and PN already 1 h after application. However, during water stress gs, E, and PN in plants pre-treated with ABA remained higher than in plants pre-treated with water. Positive effects of ABA application were observed also after rehydration. In contrast, the effects of pre-treatment with BA were species-specific. While in bean plants BA application ameliorated negative effect of water stress, only very slight effects were observed in maize, and in sugar beet BA even aggravated the effects of water stress.  相似文献   

8.
Two maize lines differing in drought resistance were grown at different drought stress induced by polyethylene glycol (PEG 10 000) solutions with osmotic potentials of –0.20, –0.40 and –0.80 MPa in the semipermeable membrane system. During the five days soil water content decreased (from 0.43 to 0.29, 0.25 and 0.23 g cm–3 for three PEG solutions, respectively) as well as leaf water potentials (w; from – 0.54 to –0.76, –1.06 and –1.46 MPa). These values were not significantly different between the investigated lines, indicating that a controlled and consistent soil moisture stress was achieved. Soil drying induced an increase in the ABA content of leaves and xylem of both lines and the effects on stomatal conductance were greater in drought susceptible line (B-432) compared to drought resistant line (ZPBL-1304). To test possible difference in stomatal sensitivity to xylem ABA between lines and to assess any ABA vs. w interaction, roots were fed with 10, 50 and 100 mmol m–3 ABA solutions in another set of experiments. These results showed that manipulation of xylem ABA affected stomata of both lines similarly. Comparison of stomatal sensitivity to drought-induced and applied ABA demonstrated that drought treatment affected stomata of investigated lines by differentially increasing their sensitivity to xylem ABA, thus confirming an interaction between chemical signalling and hydraulic signalling.  相似文献   

9.
Water stress induced an increase in endogenous concentrations of ABA in Lavandula stoechas L. plants to 13100 pmol ABA g–1 FW, which may contribute to the maintenance of water relations between the second and the third day of water stress treatment. After the third day, a sharp decrease in ABA levels was observed to 2630 pmol ABA g–1 FW, together with a decrease in water content and water potential and a loss of plant response to water stress. Water deficit did not induce an increase in endogenous ABA concentration, which remained at 514 pmol ABA g–1 FW in Rosmarinus officinalis L., which is more sclerophyllous than L. stoechas. Nevertheless, the relative water content of Rosmarinus officinalis L. after seven days of water stress decreased more than 40% and reached values of –3.2 MPa. R. officinalis showed lower levels of ABA, but significantly higher levels of IAA and ZR than L. stoechas (4 times and 6 times respectively in well watered-plants). The increase in ABA levels is not a common mechanism in these two Mediterranean shrubs which survive under water stress conditions.Abbreviations ABA abscisic acid - d days of water stress treatment - DW dry weight - FW fresh weight - IAA indole-3-acetic acid - RP Reversed Phase - RWC relative water content - TW turgid weight - WC water content - ZR zeatin riboside - water potential  相似文献   

10.
R. J. Fellows  J. S. Boyer 《Planta》1976,132(3):229-239
Summary Changes in membrane integrity, conformation and configuration, and in photosystem II (PS II) activity (measured as dichloroindophenol photoreduction) of sunflower (Helianthus annuus L.) chloroplasts were studied after leaf tissue had been desiccated to various water potentials ( w ). Fixatives for electron microscopy were adjusted osmotically to within 1 bar of the w of the tissue to prevent rehydration during fixation. PS II activity decreased to 50% of the control activity at a w of-26 bar. At this w , leaf viability was being lost but there was virtually no loss of integrity of the thylakoid lamellar system. Even at extreme w (below-100 bar), thylakoids retained much structural detail but were less stained. At-26 bar, intrathylakoid spacing (configuration) and lamellar thickness (conformation) were decreased in vivo. Upon isolation of the plastids, the differences in configuration disappeared but the differences in conformation remained. The decreases in membrane conformation and PS II activity both, in vivo and in vitro suggest that alterations in conformation may cause decreases in chloroplast activity at w as low as-26 bar. Since structural detail was maintained, however, previous observations of altered membrane integrity, which involved tissue fixed without osmotic support, may have been affected by tissue rehydration during fixation.Abbreviations DCIP sodium 2,6-dichloroindophenol - PS II photosystem II - w leaf water potential  相似文献   

11.
The activity of nitrate reductase and the pool sizes of some amino acids and some sugars were measured in relation to the leaf water potential () of maize leaves. The activity of nitrate reductase was severely inhibited in water-stressed maize leaves. This was not due to substrate shortage or the presence of an inhibitor at reduced leaf water potential. While the typical proteinogenic amino acids valine, tyrosine, leucine and isoleucine were almost undetectable in the leaves of the control plants, their concentrations markedly increased with declining , thus indicating protein degradation. The concentrations of serine, glycine and glutamate increased upon water stress, their total amount in severely stressed leaves ranging 5- to 6-fold higher than the total amount of valine, tyrosine, leucine and isoleucine at this stage of water deficit. The pool sizes of glucose, fructose and sucrose decreased in relation to decreasing . The total amount of organic solutes remained almost constant at least up to a of approx.—1.0 MPa and then dropped to about 50% when reached –1.25 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PAR photosynthetically active radiation  相似文献   

12.
J. S. Boyer  Gloria Wu 《Planta》1978,139(3):227-237
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials ( w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, w was similar to the water potential of the environment when cell enlargement was not occurring. The low w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (Lp). Despite the low Lp of growing cells, Lp decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and Lp increased when auxin was resupplied exogenously. The auxin-induced increase in Lp was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in Lp appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to Lp remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.  相似文献   

13.
Eucalyptus camaldulensis Dehnh. seedlings inoculated with Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. were grown in well watered soil (s –0.03 MPa) or subjected to a long-term soil water stress of up to –1.0 MPa over 13-week period in a glasshouse. After 13 weeks, all seedling containers were watered to field capacity and then water was withheld from the E. camaldulensis seedlings to induce a short-term drought. Diurnal measurements of seedling photosynthesis rate (A), leaf stomatal conductance (g) and leaf water potential (p) were completed before, during, and after the short term drought. Although they were growing in an equal soil volume, photosynthesis rate (A), leaf stomatal conductance and leaf water potential (p) of larger seedlings with P. tinctorius ectomycorrhizae were similar to those of smaller seedlings colonized with T. terrestris during the short-term drought period. Seedlings inoculated with Pisolithus tinctorius maintained higher photosynthesis rates over the course of the short-term drought. Thus, P. tinctorius ectomycorrhizae appear to be more efficient than those of T. terrestris in assisting seedlings to maintain gas exchange and photosynthesis under limited soil moisture conditions.  相似文献   

14.
The effect of a short period of saline stress was studied in two phenotypically different cultivars, one of normal fruit-size (L. esculentum cv. New Yorker) and one of cherry fruit-size (L. esculentum var.cerasiforme cv. PE-62). In both cultivars the relative growth rate (RGR) and the leaf area ratio (LAR) decreased following salinisation. The leaf turgor potential (p) and the osmotic potential at full turgor (os) decreased to the same extent in both cultivars. However, the contributions of organic and inorganic solutes to the osmotic adjustment was different between cultivars. New Yorker achieved the osmotic adjustment by means of the Cl and Na+ uptake from the substrate, and by synthesis of organic solutes. In the cherry cultivar organic solutes did not contribute to the osmotic adjustment, instead, their contribution decreased after salinisation. After the salt stress was removed, the water stress disappeared, the content of organic solutes decreased in plants of both cultivars and, therefore, their growth was not retarded by the diversion of resources for the synthesis of organic solutes. However, the toxic effects of the Cl and Na+ did not disappear after removal of the salt stress, and the net assimilation rate (NAR) and the rate of growth (RGR) did not recover.  相似文献   

15.
M. Hohl  P. Schopfer 《Planta》1992,188(3):340-344
Plant organs such as maize (Zea mays L.) coleoptiles are characterized by longitudinal tissue tension, i.e. bulk turgor pressure produces unequal amounts of cell-wall tension in the epidermis (essentially the outer epidermal wall) and in the inner tissues. The fractional amount of turgor borne by the epidermal wall of turgid maize coleoptile segments was indirectly estimated by determining the water potential * of an external medium which is needed to replace quantitatively the compressive force of the epidermal wall on the inner tissues. The fractional amount of turgor borne by the walls of the inner tissues was estimated from the difference between -* and the osmotic pressure of the cell sap (i) which was assumed to represent the turgor of the fully turgid tissue. In segments incubated in water for 1 h, -* was 6.1–6.5 bar at a i of 6.7 bar. Both -* and i decreased during auxin-induced growth because of water uptake, but did not deviate significantly from each other. It is concluded that the turgor fraction utilized for the elastic extension of the inner tissue walls is less than 1 bar, i.e. less than 15% of bulk turgor, and that more than 85% of bulk turgor is utilized for counteracting the high compressive force of the outer epidermal wall which, in this way, is enabled to mechanically control elongation growth of the organ. This situation is maintained during auxin-induced growth.Abbreviations and Symbols i osmotic pressure of the tissue - 0 external water potential - * water potential at which segment length does not change - IAA indole-3-acetic acid - ITW longitudinal inner tissue walls - OEW outer epidermal wall - P turgor Supported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

16.
Summary The effect of 2-day cycles of osmotically induced leaf moisture stress followed by partial recovery on the nodulation and nitrogenase activity of 2 soya cultivars was studied. Fourteen days after plant inoculation (mid-growth stage) the total leaf electrochemical water potential (wleaf) of control plants ranged from –0.8 to –1.9 bars, whereas the concentrations of osmoticum (polyethylene glycol 4000) induced wleaf values ranging from –1.4 (recovery value) to –3.1 bars (low stress), –1.8 to –4.4 bars (mild stress), and –2.2 to –6.2 bars (medium stress). The low stress treatment reduced nodule numbers and their specific activity in both cultivars, without affecting nodule size or the time required for nodule initiation. Nodule initiation was delayed in both cultivars by the mild and medium stress treatments, the former treatment reducing the number and size of the nodules and such nodules exhibited very low specific activity. The medium stress treatment prevented the further development of nodule initials, which remained inactive throughout the experiment. Such results imply an effect of water stress on the infection process and on nodule morphogenesis. The reduction in nodule numbers observed in water stressed plants was not associated with a reduced number of rhizobia in the rhizoplane nor due to an effect on root growth or root hair formation.At a stage prior to the formation of macroscopic nodule initials, the roots of plants under medium stress (wleaf=–5.5 bar)s) had a higher content of abscisic acid (ABA) (4-fold increase) and a lower content of gibberellin (GA)-like substances (21.4% reduction) as compared to control plants (wleaf=–1.0 bar). Although the medium stress treatment slightly increased the stomatal resistance of leaves, photosynthetic and transpiration rates were unaffected. Similar alterations of the hormononal balance occurred in the nodulated roots of plants subjected to naturally induced leaf moisture stress.Since the foliar application of ABA (1.92×10–5 M) to unstressed plants inhibited nodulation (45% reduction in nodule numbers), the increased endogenous content of thishormone in the roots of plants under leaf moisture stress may provide some physiological insight into the inhibitory effect of water stress on the nodulation process.  相似文献   

17.
Hubert Felle 《Planta》1988,174(4):495-499
In epidermal cells of maize (Zea mays L.) coleoptiles, cytosolic pH (pHc), cytosolic free calcium, membrane potential and changes thereof were monitored continuously and simultaneously (pHc/, m, Ca2+/ m) using double-barrelled ion-sensitive microelectrodes. In the resting cells the cytosolic pH was 7.3–7.5 and the concentration of free calcium was 119±24 nM. One-micromolar indole-3-acetic acid (IAA), added to the external medium at pH 6.0 triggered oscillations in m, pHc and free calcium with a period of 20 to 30 min. Acidification of the cytosolic pH increased the cytosolic free calcium. The m oscillations are attributed to changes in activity of the H+-extrusion pump at the plasmalemma, triggered off by pH and controlled by pH regulation (pH oscillation). The origin of the pHc and Ca2+ changes remains unclear, but is possibly caused by auxin-receptor-induced lipid breakdown and subsequent second-messenger formation. It is suggested that the observed cytosolic pH and Ca2+ changes are intrinsically interrelated, and it is concluded that this onset of regulatory processes through the phytohormone IAA is indicative of calcium and protons mediating early auxin action in maize coleoptiles. It is further concluded that the double-barrelled ion-sensitive microelectrode is an invaluable tool for investigating in-vivo hormone action in plant tissues.Abbreviations and symbols FC fusicoccin - IAA indole-3-acetic acid - Mes 2-(N-morpholino)ethanesulfonic acid - pHc cytosolic pH - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - m membrane potential difference (mV)  相似文献   

18.
Cells of Nostoc commune UTEX 584 from liquid cultures expressed an upshift in nitrogenase activity when immobilised on inert supports and exposed to matric water potentials between -1.10 and -99.5 MPa. Cells incubated at 0.10 MPa (aw=c 1.0) maintained increased activity for at least 48 h following immobilization. At water potentials below -23.1 MPa (aw=0.85), the upshift was transitory. Nitrogenase activity decreased rapidly when immobilised cells were incubated at lower values of m.Desiccated cells stored at -99.5 MPa (aw=0.50) underwent an upshift in nitrogenase activity, and in the size of the intracellular ATP pool, when rewetted with either distilled water or liquid MBo medium (o =-0.18 MPa). The upshift in nitrogenase activity was chloramphenicol-sensitive and was preceeded by a lag. The duration of the lag depended on the time taken to equilibrate cells to-99.5 MPa, the time desiccated, and the conditions of storage and rewetting. Cells that had no, or very low, nitrogenase activity when rewetted in air, showed a marked stimulation of nitrogenase activity in the presence of 5% v/v CO2 under both aerobic and anerobic conditions.When rewetted in the presence of 1% w/v glucose (o =-0.14 MPa), vegetative cells remained intact, but heterocysts underwent autolysis and nitrogenase activity was not detected, even in the presence of 5% v/v CO2.Abbreviations TTC 2,3,5-triphenyl-2-tetrazolium chloride - m matric water potential - o osmotic water potential - aw water activity  相似文献   

19.
Drought response of a native and introduced Hawaiian grass   总被引:6,自引:0,他引:6  
The alien grass, Pennisetum setaceum, dominates many of the lowland arid regions that once supported native Heteropogon contortus grassland on the island of Hawaii. Response to drought in a glasshouse was compared between these C4 grasses to test if success as an invader is related to drought tolerance or plasticity for traits that confer drought tolerance. Pennisetum produced 51% more total biomass, allocated 49% more biomass to leaves, and had higher net photosynthetic rates (P n) on a leaf area basis than Heteropogon. Plants of both species under drought produced less total biomass and increased their allocation to roots compared to well-watered plants, but there was no difference between the two species in the magnitude of these responses. The decline in P n with decreasing leaf water potential (1) was greater for Pennisetum compared to Heteropogon. Plasticity in the response of P n to 1, osmotic potentials, and the water potentials at turgor loss in response to drought were not different between the two species. Stomata were more responsive to w in Heteropogon than in Pennisetum and for well-watered plants compared to droughted plants. Plasticity for the stomatal response to w, however, was not different between the species. There was no evidence that the alien, Pennisetum, had greater plasticity for traits related to drought tolerance compared to the native, Heteropogon. Higher P n and greater biomass allocation to leaves resulted in greater growth for Pennisetum compared to Heteropogon and may explain the success of Pennisetum as an invader of lowland arid zones on Hawaii.  相似文献   

20.
Studies were undertaken to determine if there is an association between nonstomatally-mediated acclimation of photosynthesis to low water potential (w) and the maintenance of chloroplast volume during water stress. Spinach plants either kept well watered throughout their growth (non-acclimated), or subjected to water stress such that leaf w dropped to -1.5 megapascals (MPa) and then were rewatered (acclimated) were subjected to drought episodes. During these stress periods, photosynthesis was maintained to a greater extent in acclimated plants as compared to non-acclimated plants at w below -1 MPa.Estimates of internal leaf [CO2] suggested that photosynthetic acclimation to low w was not primarily due to altered stomatal response. As w dropped from initial values, a decline in steady state levels of ribulose 1,5-bisphosphate (RuBP) occurred in both non-acclimated and acclimated plants. RuBP decline was less severe in acclimated plants.Low w effects on chloroplast volume in non-acclimated and acclimated plants were estimated by measuring the volume of intact chloroplasts isolated from plants in solutions which were made isotonic to declining leaf osmotic potential during the drought episodes. Chloroplast volume was maintained to a greater extent at low w in acclimated, as compared with non-acclimated plants. Although substantial osmotic adjustment occurred in both non-acclimated and acclimated plants, the extent of osmotic adjustment was the same. These data were interpreted as supporting the hypothesis that cellular-level acclimation to low w is associated with chloroplast volume maintenance, and this physiological acclimation is correlated with enhanced photosynthetic capacity of the leaf at low w.Abbreviations [CO2]i internal leaf CO2 concentration - s osmotic potential - RWC relative water content - RuBP ribulose 1,5-bisphosphate - w water potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号