首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the "Synergistes" phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the "Synergistes" phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The "Synergistes" phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, "Candidatus Tammella caduceiae," for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

2.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

3.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   

4.
Phylogenetic relationships, diversity, and in situ identification of spirochetes in the gut of the termite Neotermes koshunensis were examined without cultivation, with an emphasis on ectosymbionts attached to flagellated protists. Spirochetes in the gut microbial community investigated so far are related to the genus Treponema and divided into two phylogenetic clusters. In situ hybridizations with a 16S rRNA-targeting consensus oligonucleotide probe for one cluster (known as termite Treponema cluster I) detected both the ectosymbiotic spirochetes on gut protists and the free-swimming spirochetes in the gut fluid of N. koshunensis. The probe for the other cluster (cluster II), which has been identified as ectosymbionts on gut protists of two other termite species, Reticulitermes speratus and Hodotermopsis sjoestedti, failed to detect any spirochete population. The absence of cluster II spirochetes in N. koshunensis was confirmed by intensive 16S ribosomal DNA (rDNA) clone analysis, in which remarkably diverse spirochetes of 45 phylotypes were identified, almost all belonging to cluster I. Ectosymbiotic spirochetes of the three gut protist species Devescovina sp., Stephanonympha sp., and Oxymonas sp. in N. koshunensis were identified by their 16S rDNA and by in situ hybridizations using specific probes. The probes specific for these ectosymbionts did not receive a signal from the free-swimming spirochetes. The ectosymbionts were dispersed in cluster I of the phylogeny, and they formed distinct phylogenetic lineages, suggesting multiple origins of the spirochete attachment. Each single protist cell harbored multiple spirochete species, and some of the spirochetes were common among protist species. The results indicate complex relationships of the ectosymbiotic spirochetes with the gut protists.  相似文献   

5.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the “Synergistes” phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the “Synergistes” phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The “Synergistes” phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, “Candidatus Tammella caduceiae,” for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

6.
Bacterial attachments to nearly the entire surface of flagellated protists in the guts of termites and the wood-feeding cockroach Cryptocercus are often observed. Based on the polymerase chain reaction-amplified 16S rRNA gene sequences, we investigated the phylogenetic relationships of the rod-shaped, attached bacteria (ectosymbionts) of several protist species from five host taxa and confirmed their identity by fluorescence in situ hybridizations. These ectosymbionts are affiliated with the order Bacteroidales but formed three distinct lineages, each of which may represent novel bacterial genera. One lineage consisted of the closely related ectosymbionts of two species of the protist genus Devescovina (Cristamonadida). The second lineage comprised three phylotypes identified from the protist Streblomastix sp. (Oxymonadida). The third lineage included ectosymbionts of the three protist genera Hoplonympha, Barbulanympha and Urinympha in the family Hoplonymphidae (Trichonymphida). The ultrastructural observations indicated that these rod-shaped ectosymbionts share morphological similarities of their cell walls and their point of attachment with the protist but differ in shape. Elongated forms of the ectosymbionts appeared in all the three lineages. The protist cells Streblomastix sp. and Hoplonympha sp. display deep furrows and vane-like structures, but these impressive structures are probably evolutionarily convergent because both the host protists and their ectosymbionts are distantly related.  相似文献   

7.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

8.
9.

Background  

The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community.  相似文献   

10.
The surface of many termite gut flagellates is colonized with a dense layer of bacteria, yet little is known about the evolutionary relationships of such ectosymbionts and their hosts. Here we investigated the molecular phylogenies of devescovinid flagellates (Devescovina spp.) and their symbionts from a wide range of dry-wood termites (Kalotermitidae). From species-pure flagellate suspensions isolated with micropipettes, we obtained SSU rRNA gene sequences of symbionts and host. Phylogenetic analysis showed that the Devescovina spp. present in many species of Kalotermitidae form a monophyletic group, which includes also the unique devescovinid flagellate Caduceia versatilis. All members of this group were consistently associated with a distinct lineage of Bacteroidales, whose location on the cell surface was confirmed by fluorescence in situ hybridization. The well-supported congruence of the phylogenies of devescovinids and their ectosymbionts documents a strict cospeciation. In contrast, the endosymbionts of the same flagellates ('Endomicrobia') were clearly polyphyletic and must have been acquired independently by horizontal transfer from other flagellate lineages. Also the Bacteroidales ectosymbionts of Oxymonas flagellates present in several Kalotermitidae belonged to several distantly related lines of descent, underscoring the general perception that the evolutionary history of flagellate-bacteria symbioses in the termite gut is complex.  相似文献   

11.
AIMS: The termite gut microbiota can include a variety of micro-organisms from the three domains: Bacteria, Archaea and Eucarya. The bacterial groups from the gut systems are mainly affiliated to the proteobacteria, the Gram-positive groups Bacterioiodes/Flavobacterium branch and the spirochetes, Firmicutes and Actinobacteria. However, culture independent molecular studies have revealed that the majority of these microbial gut symbionts have not yet been cultured, including actinobacterial clusters associated with termite guts. Accordingly, the aim of this study was to selectively isolate the actinofloral layers of gut associated microflora of the Coptotermes lacteus (Froggatt) species located at the Sunshine Coast Region of Queensland, Australia to increase our knowledge on the diversity of actinobacterial taxa present in the termite guts. METHODS AND RESULTS: Actinofloral layers associated with the guts of the wood-eating subterranean termite C. lacteus were investigated by exploiting the phage susceptibility of different gut associated bacteria which impede the growth of actinomycetes on isolation plates. These unwanted microbial taxa were removed by exposing the gut contents to polyvalent bacteriophages specifically targeting different background bacterial taxa and after their removal from the isolation plates previously undetected and novel actinomycetes were successfully cultured from the gut samples. CONCLUSIONS: Use of bacteriophages as a means of selective pressure successfully revealed the presence of novel actinomycete species within the guts of C. lacteus. SIGNIFICANCE AND IMPACT OF THE STUDY: Molecular ecology has undoubtedly revealed the fascinating diversity of micro-organisms, which cannot be cultured. However, these advances in the field still have not provided the ability to detect and isolate micro-organisms effectively from their ecological niches. Accordingly, studies like the one described here have importance in increasing the chances of uncultured taxa to be isolated to complement molecular microbial ecological efforts towards the establishment of an understanding on the diversity of termite gut microflora.  相似文献   

12.
13.
A unique lineage of bacteria belonging to the order Bacteroidales was identified as an intracellular endosymbiont of the protist Pseudotrichonympha grassii (Parabasalia, Hypermastigea) in the gut of the termite Coptotermes formosanus. We identified the 16S rRNA, gyrB, elongation factor Tu, and groEL gene sequences in the endosymbiont and detected a very low level of sequence divergence (<0.9% of the nucleotides) in the endosymbiont population within and among protist cells. The Bacteroidales endosymbiont sequence was affiliated with a cluster comprising only sequences from termite gut bacteria and was not closely related to sequences identified for members of the Bacteroidales attached to the cell surfaces of other gut protists. Transmission electron microscopy showed that there were numerous rod-shaped bacteria in the cytoplasm of the host protist, and we detected the endosymbiont by fluorescence in situ hybridization (FISH) with an oligonucleotide probe specific for the 16S rRNA gene identified. Quantification of the abundance of the Bacteroidales endosymbiont by sequence-specific cleavage of rRNA with RNase H and FISH cell counting revealed, surprisingly, that the endosymbiont accounted for 82% of the total bacterial rRNA and 71% of the total bacterial cells in the gut community. The genetically nearly homogeneous endosymbionts of Pseudotrichonympha were very abundant in the gut symbiotic community of the termite.  相似文献   

14.
Some species of protists inhabiting the hindgut of lower-termites have a large number of ectosymbiotic spirochetes on the cell surface. The phylogenetic positions of the ectosymbiotic spirochetes of three oxymonad protists, Dinenympha porteri in the gut of Reticulitermes speratus, and Pyrsonympha sp. and Dinenympha sp. in Hodotermopsis sjoestedti, were investigated without cultivation of these organisms. Protist fractions carefully collected with a micromanipulator were used as templates for the amplification of small subunit ribosomal RNA genes (SSU rDNA). The phylogenetic tree inferred from the nucleotide sequences of the SSU rDNA showed that they were affiliated with the Treponema cluster of spirochetes and they were divided into two clusters. One was grouped together with the spirochetal sequences reported previously from the gut of termites and the other was related to the Treponema bryantii subgroup of treponemes (denoted as termite Treponema clusters I and II, respectively). Whole-cell in situ hybridization using a fluorescent-labeled oligonucleotide probe specific for the group of sequences in cluster II identified most of the ectosymbiotic spirochetes of the oxymonad protists in the gut of R. speratus and H. sjoestedti. However, not all of the ectosymbiotic spirochetes could be detected by means of this cluster II group-specific probe and the population of ectosymbiotic spirochetes of cluster II was different among the oxymonad species. In the case of D. porteri, an oligonucleotide probe specific for one member of cluster II recognized a portion of the ectosymbiotic spirochetes of cluster II, and their population was also different depending on the cell-type of D. porteri in terms of the attachment of ectosymbiotic spirochetes. The results indicate that the spirochetes of cluster II and probably those of a part of cluster I can be assigned to ectosymbiotic species of oxymonad protists and that the population of ectosymbiotic spirochetes associated with a single protist consists of at least three species of phylogenetically distinct spirochetes.  相似文献   

15.
The candidate phylum 'Termite Group 1' (TG1) of bacteria, which is abundant in termite guts but has no culturable representative, was investigated with respect to the in situ localization, distribution, and diversity. Based on the 16S rRNA gene sequence analyses and FISH in termite guts, a number of lineages of TG1 members were identified as endosymbionts of a variety of gut flagellated protists from the orders Trichonymphida, Cristamonadida, and Oxymonadida that are mostly unique to termites. However, the survey in various environments using specific PCR primers revealed that TG1 members were also present in termites, a cockroach, and the bovine rumen that typically lack these protist orders. Most of the TG1 members from gut flagellates, termites, cockroaches, and the rumen formed a monophyletic subcluster that showed a shallow branching pattern in the phylogenetic tree, suggesting their recent diversification. Although endosymbionts of the same protist genera tended to be closely related, the endosymbiont lineages were often independent of the higher level classifications of their host protist and were dispersed in the phylogenetic tree. It appears that their cospeciation is not the sole rule for the diversification of TG1 members of endosymbionts.  相似文献   

16.
Abstract Symbiotic microorganisms that inhabit the gut of Coptotermes formosanus enable this termite to degrade lignocelluloses and further produce hydrogen as an important intermediate to be recycled in its hindgut or as a byproduct to be emitted to the atmosphere. Both symbiotic protists and prokaryotes in the guts of termites demonstrated some different roles with respect to hydrogen production. In this study, the effects of two antibiotics, ampicillin and tetracycline, on hydrogen emission and the gut symbionts of C. formosanus were investigated. Hydrogen emission from termite guts was significantly enhanced when termites fed on wood diets treated with either ampicillin or tetracycline. The greatest H2 emission rates, 2 519 ± 74 and 2 080 ± 377 nmol/h/g body weight, were recorded with the treatments of ampicillin and tetracycline, respectively, which showed 6–7 times more H2 production than that of controls. Antibiotic‐treated diets negatively affected the prokaryotic communities and reduced their abundances, particularly on those ectosymbionts inhabiting the gut walls or in the gut fluid of C. formosanus, such as spirochetes. However, no significant reductions in the counts of gut cellulolytic protists, Pseudotrichonympha grassii and Holomastigotoids hartmanni, were recorded; and with a further observation by confocal laser scanning microscopy, the endosymbionts inhabiting P. grassii generally survived the antibiotic treatments. These results suggest that some prokaryotes may serve as the main hydrogen consumers, while P. grassii, together with its endosymbionts, may function as the main contributors for hydrogen production in the hindgut of C. formosanus.  相似文献   

17.
Lignocellulose digestion by wood-feeding termites depends on the mutualistic interaction of unusual, flagellate protists located in their hindgut. Most of the flagellates harbor numerous prokaryotic endosymbionts of so-far-unknown identity and function. Using a full-cycle molecular approach, we show here that the endosymbionts of the larger gut flagellates of Reticulitermes santonensis belong to the so-called termite group 1 (TG-1) bacteria, a group of clones previously obtained exclusively from gut homogenates of Reticulitermes speratus that are only distantly related to other bacteria and are considered a novel bacterial phylum based on their 16S rRNA gene sequences. Fluorescence in situ hybridization with specifically designed oligonucleotide probes confirmed that TG-1 bacteria are indeed located within the flagellate cells and demonstrated that Trichonympha agilis (Hypermastigida) and Pyrsonympha vertens (Oxymonadida) harbor phylogenetically distinct populations of symbionts (<95% sequence similarity). Transmission electron microscopy revealed that the symbionts are small, spindle-shaped cells (0.6 microm in length and 0.3 microm in diameter) surrounded by two membranes and located within the cytoplasm of their hosts. The symbionts of the two flagellates are described as candidate species in the candidate genus "Endomicrobium." Moreover, we provide evidence that the members of the TG-1 phylum, for which we propose the candidate name "Endomicrobia," are phylogenetically extremely diverse and are present in and also restricted to the guts of all lower termites and wood-feeding cockroaches of the genus Cryptocercus, the only insects that are in an exclusive, obligately mutualistic association with such unique cellulose-fermenting protists.  相似文献   

18.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

19.
Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites were analyzed without cultivation of these microorganisms. A portion of the 16S rDNA (ca. 850 bp) was amplified directly from DNA of the mixed population in the gut by PCR and cloned. A total of 30 spirochetal phylotypes affiliated with the treponemes were identified from four termite species and they were compared with those already reported from other termites. They represented separate lines of descent from any known species of Treponema, and they were divided into two discrete clusters; one was related to Spirochaeta stenostrepta and S. caldaria, and the other was grouped together with members of the Treponema bryantii subgroup. Although some sequences from evolutionarily related termites showed close similarity, most of the sequences of spirochetes were dissimilar among different termite species, and spirochetal sequences from a single termite species occurred in several distinct phylogenetic positions. These findings suggest that termites constitute a rich reservoir of novel spirochetal diversity and that evolution of the symbiosis is not simple.  相似文献   

20.
Members of the phylum Planctomycetes are found in aquatic and terrestrial habitats. Here we show that the highest density of Planctomycetes in natural environments (2.6 × 109 cells ml−1) is encountered in the hindgut of soil-feeding termites ( Cubitermes spp.), where they constitute up to one-third of the bacteria in the alkaline P3 compartment detected by fluorescent in situ hybridization (FISH). A 16S-rRNA-based approach revealed that the planctomycete community is very diverse and falls into three major clusters representing novel, deeply branching lineages. Terminal restriction fragment length polymorphism (T-RFLP) analysis and FISH with cluster-specific oligonucleotide probes confirmed that most of the lineages are also present in other gut compartments, albeit in much lower numbers, but absent from the food soil. The majority of planctomycetes in the gut belong to a large clade, the 'Termite planctomycete cluster', which consists exclusively of clones from termite guts and seems to be represented in all termite species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号