首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 252 毫秒
1.
酒类酒球菌mleP基因的克隆及其在酿酒酵母中的表达   总被引:4,自引:0,他引:4  
苹果酸通透酶具有协助苹果酸 乳酸发酵 (MLF)的重要功能。以酒类酒球菌 (Oenococcusoeni)优良菌系Oenococcus Lee SD 2a的总DNA为模板 ,用PCR方法克隆到苹果酸通透酶基因mleP ,构建了重组质粒pBMmleP。序列分析表明克隆到的基因序列与已报道的序列同源性为 99%。为使目的基因在酿酒酵母中表达 ,以大肠杆菌 酿酒酵母穿梭质粒YEp35 2为载体 ,以PGK1强启动子和ADH1终止子为调控元件 ,构建了重组表达质粒YEpmleP ,并转化酿酒酵母 (Saccharomycescerevisiae)YS5 8。酵母转化子用含有亮氨酸、组氨酸和色氨酸的YNB平板筛选鉴定。获得的转化子在添加了L 苹果酸 (5g L)的培养基中培养 4d ;取培养液上清用HPLC检测 ,结果显示重组转化子YSP的培养液中L 苹果酸剩余含量均低于空载体转化子YS35 2 ,因此所得酵母重组转化子对苹果酸的转运能力有所提高  相似文献   

2.
苹果酸-乳酸酶是苹果酸-乳酸发酵过程中负责苹果酸转化为乳酸的功能酶。在进行酒酒球菌SD2a的苹果酸-乳酸酶基因(mleA)克隆测序基础上,以PGK1强启动子和ADH1终止子为调控元件,以大肠杆菌-酵母菌穿梭质粒YEp352为载体,构建了重组表达质粒并转化酿酒酵母YS58。酵母转化子用SD/Ura平板筛选鉴定。斑点杂交检测表明目的基因mleA转化到受体菌中,SDSPAGE检测表明获得的转化子表达了约60kDa的目标蛋白。获得的转化子在添加了L苹果酸的培养基中培养4d;取培养液上清用HPLC检测L苹果酸及L乳酸含量,采用t检验进行差异显著性分析,结果表明mleA基因进行了功能性的表达,将L苹果酸转化成L乳酸,L苹果酸和L乳酸含量分别与对照差异极显著和显著,苹果酸的相对降低率平均为20.95%。在有选择压力条件下,重组质粒相对稳定,而在无选择压力条件下,传代培养10d后大约有65%的重组质粒丢失。  相似文献   

3.
苹果酸-乳酸发酵相关基因克隆及其在酵母中的表达   总被引:3,自引:1,他引:2  
苹果酸乳酸发酵是不同葡萄酒酿造过程中至关重要的降酸步骤。近20年来,围绕苹果酸乳酸发酵相关基因的克隆以及在酿酒酵母中表达的研究取得了一些进展,就该研究进展和存在的问题进行了综述。此外,也论及了苹果酸-乙醇发酵相关基因的研究,这对于一些不适合苹果酸-乳酸发酵的葡萄酒具有重要意义 。  相似文献   

4.
微生物降酸是现代葡萄酒酿造工艺中重要环节之一。利用现代生物技术将粟酒裂殖酵母中的苹果酸酶基因和苹果酸通透酶基因共同转化到酿酒酵母中,构建苹果酸-酒精酵母,使之既能进行酒精发酵,又能分解苹果酸。主要对近些年粟酒裂殖酵母苹果酸酶性质、基因结构及其转化酿酒酵母的研究做了回顾与总结,并指出了有待于解决的问题。  相似文献   

5.
苹果酸是一种重要的C4二羧酸,在食品、医药、化工等领域有广泛的应用。本文主要研究羧化途径强化及苹果酸酶失活对大肠杆菌好氧发酵生产苹果酸的影响。首先在大肠杆菌E2中过表达了磷酸烯醇式丙酮酸羧化酶基因ppc,得到菌株E21,苹果酸积累量从0.57 g/L提高到3.83 g/L。随后,分别过表达来自谷氨酸棒杆菌的丙酮酸羧化酶基因pyc和来自琥珀酸放线杆菌的磷酸烯醇式丙酮酸激酶pck基因,相应的工程菌株E21(pTrcpyc)和E21(pTrc-A-pck)分别产6.04和5.01 g/L苹果酸,得率分别达到0.79和0.65 mol/mol葡萄糖。敲除E21中的苹果酸酶基因mae A和mae B,苹果酸产量也显著提高了36%,达到5.21 g/L,得率为0.62 mol/mol。然而,在过表达pyc的基础上敲除苹果酸酶基因并不能进一步提高苹果酸的产量。经过摇瓶发酵条件的初步优化,菌株E21(pTrcpyc)生产12.45 g/L苹果酸,得率为0.84 mol/mol,达到理论得率的63.2%。  相似文献   

6.
酒酒球菌苹果酸-乳酸酶基因的测序及分析   总被引:3,自引:1,他引:2  
苹果酸乳酸酶是乳酸菌进行苹果酸乳酸发酵(MLF)的关键酶。以携带酒酒球菌(Oenococcusoeni)优良菌系OenococcusoeniSD2a的苹果酸乳酸酶基因mleA的重组质粒pLmleA作为测序质粒,进行测序分析。测序结果表明,克隆到的mleA基因序列与已报道的序列同源性为99%。mleA基因序列中有2个碱基与报道不同,其中1614碱基的改变导致错意突变,编码的氨基酸由报道的Asp变为Glu,这一改变使得原有的BamHI位点不再存在。  相似文献   

7.
利用PCR方法从酒类酒球菌(Oenococcus oeni)基因组中扩增出651 bp的DNA片段,将之克隆到pUC19-T载体上并转化大肠杆菌(E.coli)JM109菌株.重组质粒的测序结果表明,克隆到了苹果酸-乳酸酶基因(mle),它含有527 bp的阅读框架,其核苷酸序列与文献报道相同.  相似文献   

8.
用酚抽提的方法提取乳酸乳球菌的基因组DNA,利用PCR方法从乳酸菌的基因组DNA中扩增出含有苹果酸-乳酸酶基因(malolactic enzyme gene,mle)的约1.6kb的DNA片断,用1%的琼脂糖凝胶分离扩增的片断,用试剂盒回收目的基因。将回收的目的基因与pGEM-T载体连接构建mle-T载体并转化大肠杆菌DH5a,挑取阳性克隆(白色菌落),酶切鉴定并测序。SalI酶切mle-T,回收mle DNA片断,与表达载体pET-28a载体连接,构建细菌Escherichia coli表达载体。  相似文献   

9.
苹果酸乳酸发酵(MLF)是现代葡萄酒酿造工艺中重要的生物降酸手段。MLF是L苹果酸在乳酸菌的苹果酸乳酸酶催化下转变成L乳酸的酶促反应过程,该过程没有底物水平的磷酸化,但在MLF过程中苹果酸确实能够刺激细菌的比生长速率,增加细菌生物量。进一步的研究表明,代谢能的产生并非由于苹果酸的脱羧反应,而主要源于跨膜的L苹果酸摄入和(或)L乳酸的流出,从而产生跨膜质子电动势(pmf)(一小部分能量可能由L苹果酸的代谢中间产物丙酮酸产生)。按照化学渗透理论,pmf驱动F0F1ATPase合成ATP用于细菌生长。本文还对苹果酸的运输机制进行了综述。  相似文献   

10.
葡萄酒生境对乳酸菌代谢的影响   总被引:1,自引:0,他引:1  
在葡萄酒酿造中,为了提高其稳定性及质量,经常利用乳酸菌进行苹果酸.乳酸发酵.苹果酸一乳酸发酵一般自发进行,也可以接种乳酸菌.本文从酿酒酵母与乳酸菌的交互作用及酚类物质和酿酒工艺对乳酸菌的作用等方面进行了综述,讨论了葡萄酒生态环境对乳酸菌代谢的影响,为苹果酸一乳酸发酵的有效控制提供一些参考.  相似文献   

11.
Mutation of Gly-444 inactivates the S. pombe malic enzyme   总被引:1,自引:0,他引:1  
A mutant malic enzyme gene, mae2, was cloned from a strain of Schizosaccharomyces pombe that displayed almost no malic enzyme activity. Sequence analysis revealed only one codon-altering mutation, a guanine to adenine at nucleotide 1331, changing the glycine residue at position 444 to an aspartate residue. Gly-444 is located in Region H, previously identified as one of eight highly conserved regions in malic enzymes. We found that Gly-444 is absolutely conserved in 27 malic enzymes from various prokaryotic and eukaryotic sources, as well as in three bacterial malolactic enzymes investigated. The evolutionary conservation of Gly-444 suggests that this residue is important for enzymatic function.  相似文献   

12.
Metabolic engineering of malolactic wine yeast   总被引:4,自引:0,他引:4  
  相似文献   

13.
Wine production is characterized by a primary alcoholic fermentation, conducted by Saccharomyces cerevisiae, followed by a secondary malolactic fermentation (MLF). Although most lactic acid bacteria (LAB) have the ability to metabolize L-malate, only a few species survive the high ethanol and SO2 levels in wine. Wines produced in colder viticultural regions have a lower pH than wines produced in warmer regions. The decarboxylation of L-malate in these wines leads to an increase in pH, more organoleptic complexity and microbiological stability. MLF is, however, difficult to control and problems often occur during filtering of such wines. Pediococcus spp. are known to occur in high pH wines and have strong malolactic activity. However, some pediococci synthesize exocellular polysaccharides, which may lead to abnormal viscosity in wine. In this study, the malolactic gene from Pediococcus damnosus NCFB1832 (mleD) was cloned into S. cerevisiae and co-expressed with the malate permease gene (mae1) of Schizosaccharomyces pombe. Expression of the mleD gene was compared to the expression of two other malolactic genes, mleS from Lactococcus lactis MG1363 and mleA from Oenococcus oeni Lal1. The genetically modified strain of S. cerevisiae decreased the level of L-malate in grape must to less than 0.3 gl(-1) within 3 days. This is the first expression of a malolactic gene from Pediococcus in S. cerevisiae.  相似文献   

14.
AIMS: To investigate the occurrence and extent of Saccharomyces cerevisiae and Oenococcus oeni interactions. METHODS AND RESULTS: Interactions between S. cerevisiae and O. oeni were investigated by double-layer and well-plate assays showing the occurrence of specific interactions for each yeast-malolactic bacteria (MLB) coupling. Heat and protease treatments of synthetic grape juice fermented by the S. cerevisiae strain F63 indicated that the inhibitory activity exerted by this yeast on O. oeni is due to a proteinaceous factor(s) which exerts either bacteriostatic or bactericidal effect depending on concentration and affects malolactic fermentation in natural grape juice and wine. CONCLUSIONS: A proteinaceous factor(s) produced by a S. cerevisiae wine strain able to inhibit O. oeni growth and malic acid fermentation was characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: The individuation, characterization and exploitation of yeast proteinaceous factor(s) exerting inhibitory activity on MLB may offer new opportunities for the management of malolactic fermentation.  相似文献   

15.
16.
Three cultures immobilized by entrapping within alginate gel beads and packed in near-horizontal acrylic columns (15.0° angle) were used for alcohol/malolactic fermentation of grape must. Immobilized cells of Saccharomyces cerevisiae spp. chablis were placed in the 1st column, S. cerevisiae cells (an alcohol-sucrose-tolerant yeast) in the 2nd and the Lactobacillus delbrueckii cells in the 3rd column. Grape must with different levels of sugar(s), were each fed to the bioreactor columns at dilution rate of 0.74 h−1 and recycled at 37.0C. The percent fermentation efficiency and yield using the 1st and 2nd columns for grape must containing 33.3% sugar(s) were 92.9 and 91.5%, respectively, and the wine had 15.5% alcohol after 23 cycles (∼ 50 h fermentation). The viability of the immobilized yeast cells in the alginate gel-bead was 84%± 4.0. Immobilized Lactobacillus delbrueckii cells were then added to the 3rd column (in series 37.0C) and the three cultures resulted in alcohol/malolactic fermentation of the grape must, evidenced by the high level of alcohol formed and simultaneous transformation of malic to lactic acid. Sensory evaluation of the wine scored high (7.8 ± 2.0 based on a value of 10.0) and indicated the potential of using multiple immobilized cells of two specific yeast cultures and a malolactic Lactobacillus for wine production.  相似文献   

17.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

18.
Malolactic fermentation is a process that is influenced by various factors that can inhibit the growth of the malolactic bacteria. Inhibitory metabolites produced by yeast may have an important role in the correct development of malolactic fermentation. For these reasons, we have investigated the effects of such metabolites on the growth of malolactic bacteria under different environmental conditions, to aid in our understanding of the significance of these interactions in the wine-making environment. Our screening methods to detect interactions between yeast and malolactic bacteria showed a variable and wide diffusion of yeast inhibitory activity on the growth of the malolactic bacteria. However, this first approach to determine this inhibitory activity of yeast gave an overestimation when compared to the results obtained under actual wine-making conditions. The evaluation of malic acid consumption indicated that under inhibitory conditions a partial L-malic acid degradation was seen, indicating that the malolactic activity continued without bacterial growth. However, these yeast-inhibiting effects in addition to other environmental factors could cause a complete failure of malolactic fermentation.  相似文献   

19.
Abstract Malolactic fermentation, a crucial step in winemaking, results mostly in degradation by lactic acid bacteria of L-malic acid into L-lactic acid. This direct decarboxylation is catalysed by the malolactic enzyme. Recently we, and others, have cloned the mleS gene of Lactococcus lactis encoding malolactic enzyme. Heterologous expression of mleS in Saccha-romyces cerevisiae was tested to perform simultaneously alcoholic and malolactic fermentations by yeast. mleS gene was cloned in a yeast multicopy vector under a strong promoter. Malolactic activity was present in crude extracts of recombinant yeasts. Malic acid degradation was tested during alcoholic fermentation in synthetic media and must. Yeasts expressing the mleS gene actually produced L-lactate from L-malate; nevertheless malate degradation was far from complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号