首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.  相似文献   

2.
Fast J  Mossberg AK  Nilsson H  Svanborg C  Akke M  Linse S 《FEBS letters》2005,579(27):6095-6100
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.  相似文献   

3.
The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.  相似文献   

4.
Heat shock proteins (HSPs), which are important for a number of different intracellular functions, are occasionally found on the surface of cells. The function of heat shock protein on the cell surface is not understood, although it has been shown to be greater in some tumor cells and some virally infected cells. Surface expression of both glycoprotein 96 (gp96) and Hsp70 occurs on tumor cells, and this expression correlates with natural killer cell killing of the cells. We examined the surface expression of gp96 and Hsp70 on human breast cell lines MCF7, MCF10A, AU565, and HS578, and in primary human mammary epithelial cells by immunofluorescence microscopy and flow cytometry. The nonmalignant cell lines HS578, MCF10A, and HMEC showed no surface expression of gp96, whereas malignant cell lines MCF7 and AU565 were positive for gp96 surface expression. All of the breast cell lines examined showed Hsp70 surface expression. These results also confirm previous studies, demonstrating that Hsp70 is on the plasma membrane of tumor cell lines. Given the involvement of heat shock proteins, gp96 and Hsp70, in innate and adaptive immunity, these observations may be important in the immune response to tumor cells.  相似文献   

5.

Background

Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure.

Methodology/Principal Findings

We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLAall-Ala). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles.

Conclusions/Significance

The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.  相似文献   

6.
Extracellular heat shock protein 70 (Hsp70) exerts profound effects both in mediating tumor rejection by Hsp70-based vaccines and in autoimmunity. Further progress in this area, however, awaits the identification of the cell surface receptors for extracellular Hsp70 that mediate its immune functions. We have examined a wide range of candidate Hsp70 receptors and find significant binding through two main families of cell surface proteins, including 1) the scavenger receptor (SR) family and 2) C-type lectins of the NK family. In addition, given that the anticancer effects of Hsp70 vaccines have been shown to involve uptake of Ags by APC exposed to Hsp70-tumor Ag complexes, we have examined the ability of the receptors identified here to internalize Hsp70-peptide complexes. Our findings indicate that three members of the SR family (lectin-like oxidized low density lipoprotein receptor 1; fasciclin, epidermal growth factor-like, laminin-type epidermal growth factor-like, and link domain-containing scavenger receptor-1; and SR expressed by endothelial cells-1) are able to bind Hsp70-peptide complexes and mediate its efficient internalization. Indeed, each of the SR was able to mediate efficient uptake of Hsp70 when transfected into Chinese hamster ovary cells previously null for uptake. Curiously, Hsp70 internalization occurs independently of the intracellular domains of the SR, and Hsp70 uptake could be detected when the entire intracellular domain of lectin-like oxidized low density lipoprotein receptor 1 or SR expressed by endothelial cells-1 was truncated. The existence of a wide repertoire of cell surface Hsp70-binding structures may permit intracellular responses to extracellular Hsp70 that are cell specific and discriminate between Hsp70 family members.  相似文献   

7.
Hsp70 is a universally conserved essential protein chaperone. In addition to its roles in many cellular process, Hsp70 protects cells from stress by binding partially unfolded proteins. Therefore, Hsp70 prevents protein aggregation and prion formation. Prions are infectious agents and are responsible for several fatal neurodegenerative diseases. Eukaryotic cells have several cytosolic Hsp70 isoforms, some constitutively expressed (Hsc70s), and others expressed only when cells are exposed to stress (Hsp70s). To determine which factors conferred functional specificity, we constructed hybrid Hsc/Hsp chaperones. All hybrids supported growth except those that contained the ATPase domain derived from inducible Hsp70. Thus, regulation of peptide binding by ATP hydrolysis must differ significantly between Hsc- and Hsp70 isoforms. In this work, nucleotide and peptide binding domain communication of Hsp70 proteins during their interaction with nucleotides and peptide substrates were investigated in vitro by using hybrid constructs.  相似文献   

8.
Mechanisms for Hsp70 secretion: crossing membranes without a leader   总被引:2,自引:0,他引:2  
Heat shock protein 70 (Hsp70) is released from cells of many types and plays a significant signaling role, particularly in the inflammatory and immune responses. However, Hsp70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. However, Hsp70 can be released from cells by active mechanism that are independent of de novo Hsp70 synthesis or cell death. This pathway is similar to one utilized by the leaderless protein interleukin 1beta. Hsp70 release involves transit through an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of Hsp70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of Hsp70 into this secretory compartment appears to involve the ABC-family transporter proteins. While the cell signals involved in triggering Hsp70 release through this lysosomal pathway are largely unknown, recent data suggest a regulatory role for extracellular ATP. These mechanisms are also shared by interleukin 1beta secretion. Following release it has been shown that Hsp70 binds to adjacent cells, suggesting that the secreted protein participates in paracrine or autocrine interactions with adjacent cell surfaces. Thus an outline is beginning to of the mechanisms of Hsp70 secretion. Much further study will be required to fully elucidate mechanisms involved in targeting Hsp70 towards the non-canonical secretion pathways and its regulation.  相似文献   

9.
Co-immunoprecipitation of Hsp101 with cytosolic Hsc70.   总被引:1,自引:0,他引:1  
In animals and yeast, cytosolic Hsp70s function in concert with other molecular chaperones. Hsp70 is a major chaperone in the Hsp90 multi-chaperone complexes that participate in maturation of steroid receptors and several other proteins. Hsp70s also appear to form a complex with Hsp90 and Hsp110/sHsp. A 100 kDa protein was co-immunoprecipitated with cytosolic Hsc70 from maize seedlings (Zea mays). The presence of this complex was further confirmed using gel-filtration chromatography. Mass spectrometric analysis showed that the 100 kDa protein is homologous with Arabidopsis Hsp101. Treatment with apyrase enhanced the co-immunoprecipitation of Hsp101 with Hsc70, while ATP had the opposite effect. In the presence of carboxymethylated alpha-lactalbumin (CMLA), which is permanently unfolded, the complex dissociated. Based on these observations, it is concluded that Hsc70 and Hsp101 are present in a complex in the plant cytosol.  相似文献   

10.
We isolated multiple HSPs from rainbow trout Oncorhynchus mykiss RTG-2 cells and quantitatively compared their mRNA levels between unstressed and heat-shocked cells using real-time RT-PCR analysis. Consequently, we isolated nine cDNAs encoding HSPs from heat-shocked RTG-2 cells, namely, Hsp90betaa, Hsp90betab, Grp78, Hsp70a, Hsc70a, Hsc70b, Cct8, Hsp47, and DnaJ homolog. Quantitative RT-PCR analyses, in which Hsp70b isolated previously was included, showed that the mRNA accumulation levels of Hsp70a, Hsp70b, Hsc70a, Hsc70b, and Hsp47 were significantly increased after heat shock, and the increased levels of two Hsp70s, Hsp70a, and Hsp70b, were most conspicuous. In the case of Hsc70s, the increased level of Hsc70b was more remarkable than that of Hsc70a. These results demonstrate the importance of a comprehensive expression analysis of HSPs for better understanding of the cellular stress response in fish, especially in tetraploid species such as rainbow trout.  相似文献   

11.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly.  相似文献   

12.
13.
HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.  相似文献   

14.
The Hsp104 protein from Saccharomyces cerevisiae is a member of the Hsp100/Clp family of molecular chaperones. It mediates the solubilization of aggregated proteins in an ATP-dependent process assisted by the Hsp70/40 system. Although the principal function of Hsp104 is well established, the mechanistic details of this catalyzed disaggregation are poorly understood. In this work, we have investigated the interaction of Hsp104 with reduced, carboxymethylated alpha-lactalbumin (RCMLa), a permanently unfolded model substrate. Our results demonstrate that the affinity of Hsp104 toward polypeptides is regulated by nucleotides. In the presence of ATP or adenosine-5' -O-(3-thiotriphosphate), the chaperone formed complexes with RCMLa, whereas no binding was observed in the presence of ADP. In particular, the occupation of the N-terminally located nucleotide-binding domain with ATP seems to be crucial for substrate interaction. When ATP binding to this domain was impaired by mutation, Hsp104 lost its ability to interact with RCMLa. Our results also indicate that upon association with a polypeptide, a conformational change occurs within Hsp104 that strongly reduces the dynamics of nucleotide exchange and commits the bound polypeptide to ATP hydrolysis.  相似文献   

15.
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s.  相似文献   

16.
17.
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.  相似文献   

18.
CHIP is a cochaperone of Hsp70 that inhibits Hsp70-dependent refolding in vitro. However, the effect of altered expression of CHIP on the fate of unfolded proteins in mammalian cells has not been determined. Surprisingly, we found that overexpression of CHIP in fibroblasts increased the refolding of proteins after thermal denaturation. This effect was insensitive to geldanamycin, an Hsp90 inhibitor, and required the tetratricopeptide repeat motifs but not the U-box domain of CHIP. Inhibition of Hsp70 chaperone activity abolished the effects of CHIP on protein folding, indicating that the CHIP-mediated events were Hsp70 dependent. Hsp40 competitively inhibited the CHIP-dependent refolding, which is consistent with in vitro data indicating that these cofactors act on Hsp70 in the ATP-bound state and have opposing effects on Hsp70 ATPase activity. Consistent with these observations, CHIP overexpression did not alter protein folding in the setting of ATP depletion, when Hsp70 is in the ADP-bound state. Concomitant with its effects on refolding heat-denatured substrates, CHIP increased the fraction of nascent chains coimmunoprecipitating with Hsc70, but only when sufficient ATP was present to allow Hsp70 to cycle rapidly. Our data suggest that, consistent with in vitro studies, CHIP attenuates the Hsp70 cycle in living cells. The impact of this effect on the fate of unfolded proteins in cells, however, is different from what might be expected from the in vitro data. Rather than resulting in inhibited refolding, CHIP increases the folding capacity of Hsp70 in eukaryotic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号