首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular homeostasis that controls the expression of more than 1% of human genes related to biotransformation reactions, redox homeostasis, energetic metabolism, DNA repair, and proteostasis. Its activity has a tremendous impact on physiology and pathology and therefore it is very tightly regulated, mainly at the level of protein stability. In addition to the very well established regulation by the ubiquitin E3 ligase adapter Keap1, recent advances have identified a novel mechanism based on signaling pathways that regulate glycogen synthase kinse-3 (GSK-3). This kinase phosphorylates specific serine residues in the Neh6 domain of Nrf2 to create a degradation domain that is then recognized by the ubiquitin ligase adapter β-TrCP and tagged for proteasome degradation by a Cullin1/Rbx1 complex. Here we review the mechanistic elements and the signaling pathways that participate in this regulation by GSK-3/β-TrCP. These pathways include those activated by ligands of tyrosine kinase, G protein-coupled, metabotropic, and ionotropic receptors that activate phosphatidyl inositol 3-kinase (PI3K)/ATK and by the canonical WNT signaling pathway, where a fraction of Nrf2 interacts with Axin1/GSK-3. Considering that free Nrf2 protein is localized in the nucleus, we propose a model termed “double flux controller” to explain how Keap1 and β-TrCP coordinate the stability of Nrf2 in several scenarios. The GSK-3/β-TrCP axis provides a novel therapeutic strategy to modulate Nrf2 activity.  相似文献   

5.
6.
7.
Li F  Yang H  Duan Y  Yin Y 《Cell biology international》2011,35(11):1141-1146
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway.  相似文献   

8.
9.
目的:观察槟榔碱对3T3-L1脂肪细胞脂代谢的影响并探讨其可能机制。方法:采用经典的"鸡尾酒"法诱导3T3-L1前脂肪细胞分化成熟,随后用不同浓度的槟榔碱(0、25、50、100 μmol/L)处理成熟脂肪细胞72 h。72 h后,四甲基偶氮唑盐(MTT)法检测细胞的活性;油红O染色观察胞浆内脂滴情况;Western blot检测脂肪酸合成酶(FAS)、甘油三酯脂肪酶(ATGL)、激素敏感性脂肪酶(HSL)蛋白表达。结果:诱导分化成熟的脂肪细胞胞浆内可见大量脂滴;MTT显示:0~100 μmol/L槟榔碱对脂肪细胞活力无显著影响;油红O染色后脂质含量测定结果表明槟榔碱能减少成熟脂肪细胞中脂质含量;Western blot结果显示:与0 μmol/L组(对照组)相比,槟榔碱可显著降低脂肪细胞内FAS的蛋白表达,增加ATGL和HSL的蛋白表达;其中以50 μmol/L组最为显著。结论:槟榔碱使脂肪细胞脂解增强,可能与降低脂质合成关键酶FAS的表达,增加脂质分解代谢关键酶ATGL和HSL的表达有关。  相似文献   

10.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

11.
In the previous studies, we reported that carnosic acid (CA) and carnosol (CS) originating from rosemary protected cortical neurons by activating the Keap1/Nrf2 pathway, which activation was initiated by S-alkylation of the critical cysteine thiol of the Keap1 protein by the “electrophilic” quinone-type of CA or CS. Here, we found that CA and CS inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes. In contrast, other physiologically-active and rosemary-originated compounds were completely negative. These actions seemed to be mediated by activation of the antioxidant-response element (ARE) and induction of phase2 enzymes. This estimation is justified by our present findings that only CA and CS among rosemary-originated compounds significantly activated the ARE and induced the phase2 enzymes. Next, we performed cDNA microarray analysis in order to identify the gene(s) responsible for these biological actions and found that phase2 enzymes (Gsta2, Gclc, Abcc4, and Abcc1), all of which are involved in the metabolism of glutathione (GSH), constituted 4 of the top 5 CA-induced genes. Furthermore, CA and CS, but not the other compounds tested, significantly increased the intracellular level of total GSH. Thus, we propose that the stimulation of GSH metabolism may be a critical step for the inhibition of adipocyte differentiation in 3T3-L1 cells and suggest that pro-electrophilic compounds such as CA and CS may be potential drugs against obesity-related diseases.  相似文献   

12.
K Lange  U Brandt 《FEBS letters》1990,276(1-2):39-41
The recent demonstration of a large cell surface-derived pool of insulin-sensitive glucose transporters, presumably concentrated in the microvilli of 3T3-L1 adipocytes, induced the assumption that in differentiated adipocytes, newly inserted plasma membrane areas may display restricted lateral mobility, thereby preventing diffusion of integral membrane proteins out of these areas into the adjoining plasma membrane. In order to test this assumption, the cell surface distributions of the two glucose transporter species expressed by 3T3-L1 cells were determined using specific antisera against the HepG2/erythrocyte transporter, GluT1, which is synthesized in both fibroblasts and adipocytes, and the adipocyte/muscle-specific transporter, GluT4, expressed for the first time 3-4 days after induction of adipose conversion. GluT1 was shown to be localized in the plasma membrane of both 3T3-L1 preadipocytes and adipocytes, whereas GluT4 was almost entirely restricted to the low density surface-derived vesicle (LDSV) fraction of 3T3-L1 adipocytes most likely consisting of microvilli-derived vesicles. In contrast to the minor portion of GluT4 found in the adipocyte plasma membrane fraction, equal amounts of the GluT1 protein were detected in both the plasma membrane and the LDSV fractions of adipocytes. Both transporter species were present in the microsomal and the LDSV fractions of adipocytes. The observed distribution of the two transporter species is in accordance with the postulated restriction of the lateral mobility in plasma membrane areas formed by newly inserted transgolgi vesicles of differentiated adipocytes.  相似文献   

13.
It has long been recognized that leptin, a hormone made by adipocytes, is an important circulating signal for the regulation of body weight. In addition, matrix metalloproteinase (MMP), especially MMP-2, an adipocyte-secreted protein which promotes multi-cellular adipose clusters, is up-regulated in obesity. The present study is designed to evaluate whether trans-10,cis-12 conjugated linoleic acid (t-CLA) can suppress leptin-induced MMP-2 secretion in 3T3-L1 cells. The result showed that expressions of adipocyte marker proteins were significantly reduced by t-CLA-treated cultures, but not by linoleic acid (LA)-treated ones. Interestingly, MMP-2 secretion was significantly increased by leptin-treated cultures, thereby leading to accelerate adipocyte differentiation, indicating that MMP-2 was a necessary mediator of adipogenesis. However, increasing concentration of t-CLA significantly reduced leptin-induced MMP-2 secretion and triglyceride (TG) content. These findings provide support for a role for t-CLA in the regulation of metabolism in leptin-induced adipose tissue development.  相似文献   

14.
3T3-L1 adipocytes promote the growth of mammary epithelium   总被引:4,自引:0,他引:4  
Murine mammary epithelium grows in association with predominantly adipocyte stroma in vivo. To investigate potential growth-promoting effects of adipocytes on mammary epithelium, we developed a co-culture system of mammary epithelium and adipocytes by taking advantage of the 3T3-L1 cell line. These cells undergo adipocyte differentiation when the culture reaches confluence and growth ceases. Mid-pregnant murine mammary epithelium was plated on lethally irradiated feeder layers of 3T3-L1 adipocytes, undifferentiated 3T3-L1 cells, 3T3-C2 fibroblasts (a subclone of 3T3 cells that does not undergo adipocyte differentiation), or tissue culture plastic. Mammary epithelial colony size on adipocyte feeder layers was 2-fold larger than colonies on 3T3-C2 cells and 4-fold larger than colonies on tissue culture plastic. Measurement of tritiated thymidine [3H]TdR incorporation and labelling index in mammary cells was significantly higher on adipocytes than on other feeder layers or plastic. There was a 6-fold increase in mammary cell number after 5 days in culture when mammary epithelium was plated on substrate-attached material ('extracellular matrix') derived from 3T3-L1 cells and a 4-fold increase in cell number when plated on plastic in conditioned medium derived from 3T3-L1 adipocytes compared with growth on plastic in unconditioned medium. We conclude that interaction of mammary epithelium with adipocytes results in a marked increase in proliferation of mammary epithelium and that extracellular components may mediate this effect.  相似文献   

15.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

16.
17.
Chronic inflammation is associated with obesity and insulin resistance; however, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and nucleotide-oligomerization domain-containing proteins play critical roles in innate immune response. Here, we report that activation of nucleotide binding oligomerization domain-containing protein-1 (NOD1) in adipocytes induces proinflammatory response and impairs insulin signaling and insulin-induced glucose uptake. NOD1 and NOD2 mRNA are markedly increased in differentiated murine 3T3-L1 adipocytes and human primary adipocyte culture upon adipocyte conversion. Moreover, NOD1 mRNA is markedly increased only in the fat tissues in diet-induced obese mice, but not in genetically obese ob/ob mice. Stimulation of NOD1 with a synthetic ligand Tri-DAP induces proinflammatory chemokine MCP-1, RANTES, and cytokine TNF-α and MIP-2 (human IL-8 homolog) and IL-6 mRNA expression in 3T3-L1 adipocytes in a time- and dose-dependent manner. Similar proinflammatory profiles are observed in human primary adipocyte culture stimulated with Tri-DAP. Furthermore, NOD1 activation suppresses insulin signaling, as revealed by attenuated tyrosine phosphorylation and increased inhibitory serine phosphorylation, of IRS-1 and attenuated phosphorylation of Akt and downstream target GSK3α/3β, resulting in decreased insulin-induced glucose uptake in 3T3-L1 adipocytes. Together, our results suggest that NOD1 may play an important role in adipose inflammation and insulin resistance in diet-induced obesity.  相似文献   

18.
The cGI PDE in particulate fractions of differentiated adipocytes (but not control 3T3-L1 fibroblasts) was cross-reactive with a polyclonal antibody raised against the bovine adipose cGI PDE. The 3T3-L1 adipocyte cGI PDE is a 135 kDa protein which is phosphorylated in 32P-labeled cells in response to beta-agonist or insulin. These results indicate that the 3T3-L1 cGI PDE is similar in structure and hormonal regulation to the analogous enzyme in the rat adipocyte.  相似文献   

19.
20.
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) catalyses the reversible metabolism of physiological glucocorticoids (cortisol, corticosterone) to inactive metabolites (cortisone, 11-dehydrocorticosterone), thus regulating glucocorticoid access to receptors. 11β-HSD-1 expression is regulated during development and by hormones in a tissue specific manner. The enzyme is highly expressed in liver, where it may influence glucocorticoid action on fuel metabolism, processes also important in adipose tissue. Here we show that 11β-HSD-1 is expressed in white adipose tissue, in both the adipocyte and stromal/vascular compartments, and in the adipocyte cell lines 3T3-F442A and 3T3-L1. In these cells, 11β-HSD-1 expression is induced upon differentiation into adipocytes and is characteristic of a ‘late differentiation’ gene, with maximal expression 6-8 days after confluence is reached. In intact 3T3-F442A adipocytes the enzyme direction is predominantly 11β-reduction, activating inert glucocorticoids. The expression of 11β-HSD-1 mRNA is altered in fully differentiated 3T3-F442A adipocytes treated with insulin, dexamethasone or a combination of the hormones, in an identical manner to glycerol-3-phosphate dehydrogenase (GPDH) mRNA (encoding a key enzyme in triglyceride synthesis and a well-characterised marker of adipocyte differentiation). The demonstration of 11β-HSD-1 expression in adipocytes and its predominant reductase activity in intact 3T3-F442A adipocytes suggests that 11β-HSD-1 may play an important role in potentiating glucocorticoid action in these cells. 3T3-F442A and 3T3-L1 represent useful model systems in which to examine the factors which regulate 11β-HSD-1 gene expression and the role of 11β-HSD-1 in modulating glucocorticoid action in adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号