首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang QX  Qiu J  Wang P  Jia GF  Wang P  Li JL  Zhou ZQ 《Chirality》2005,17(4):186-192
Hexaconazole [(RS)-2-(2,4-dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl)hexan-2-ol] is a potent triazole fungicide. The (-) isomer accounts for most of the fungicidal activity. The stereo- and/or enantioselective kinetics of hexaconazole were investigated in rabbits by intravenous injection. The concentrations of (-)- and (+)-hexaconazole in plasma, liver, and kidney tissue were determined by HPLC with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase and by gas chromatography-mass spectrometry. After intravenous administration of racemic hexaconazole (rac-hexaconazole) at 30 mg/kg, plasma, liver, and kidney levels of the (+)-enantiomer decreased more rapidly than those of the (-)-enantiomer. The (-)-/(+)-enantiomer ratio of the area under the concentration-time curve (AUC(0-infinity)) was 1.35. The total plasma clearance value (CL) of (+)-enantiomer was more than 1.3-fold higher than that of the (-)-hexaconazole. The enantiomeric ratio (ER) increased with time in plasma, liver, and kidney. Other pharmacokinetic parameters of the enantiomers were also different. These results indicate substantial stereoselectivity in the kinetics of hexaconazole enantiomers in rabbits.  相似文献   

2.
Stereoselective degradation of tebuconazole in rat liver microsomes   总被引:1,自引:0,他引:1  
Shen Z  Zhu W  Liu D  Xu X  Zhang P  Zhou Z 《Chirality》2012,24(1):67-71
The aim of this study was to assess the stereoselectivity of two tebuconazole [(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol] enantiomers in in vitro system (rat liver microsomes). The analytes were extracted with acetic ether and concentrations were determined by high performance liquid chromatography (HPLC) with a cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phase. The degradation of rac-tebuconazole (15 μM) followed first-order kinetics, and the degradation of the S-tebuconazole (t(1/2) = 22.31 min) was faster than that of the R-tebuconazole (t(1/2) = 48.76 min), but no significant difference between the enantiomers was found in the respective incubation (7.5 μM for each). Kinetic assays showed that the K(m) was different between the two enantiomers (K(mR) = 14.83 ± 2.19, K(mS) = 12.23 ± 2.72). The interaction results revealed that there was competitive inhibition between S- and R-form, and there was a significant difference between the IC(50) of R- to S-tebuconazole and S- to R-tebuconazole (IC(50R/S)/IC(50S/R) = 4.98).  相似文献   

3.
In the present study we investigated the enantioselective disappearance of hexaconazole in rat liver microsomes system prepared from both genders. High‐performance liquid chromatography (HPLC) was used for identification and quantification. The degradation of the (+)‐hexaconazole was faster than that of the (?)‐hexaconazole in racemic hexaconazole and single enantiomer incubation in both sexes. The degradation half‐life of the (+)‐hexaconazole or (?)‐hexaconazole was also gender‐related. The metabolism of (+)‐hexaconazole and (?)‐hexaconazole were faster in male rat hepatic microsomes than that in female, suggesting that at least one of the cytochrome P450s (CYP) in the male rat liver microsomes system responsible for hexaconazole metabolism was male‐specific or considerably more active. Kinetic assays showed that the intrinsic clearance in male rat liver microsomes was higher than that in female. All these results strongly suggest that sexual dimorphic metabolism of hexaconazole exists in rats. The inhibition experiments with CYP inhibitors showed that the inhibitory effect of inhibitors was enantioselective and affected by sex. The results suggest that the enantioselective metabolism of hexaconazole was determined by the amount of hepatic cytochrome P450 and the expression of individual isoforms of CYPs. Chirality 25:852–857, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Zhao M  Li LP  Sun DL  Sun SY  Huang SD  Zeng S  Jiang HD 《Chirality》2012,24(5):368-373
Tetrahydropalmatine (THP), with one chiral center, is an active alkaloid ingredient in Rhizoma Corydalis. The aim of the present paper is to study whether THP enantiomers are metabolized stereoselectively in rat, mouse, dog, and monkey liver microsomes, and then, to elucidate which Cytochrome P450 (CYP) isoforms are predominately responsible for the stereoselective metabolism of THP enantiomers in rat liver microsomes (RLM). The results demonstrated that (+)-THP was preferentially metabolized by liver microsomes from rats, mice, dogs, and monkeys, and the intrinsic clearance (Cl(int)) ratios of (+)-THP to (-)-THP were 2.66, 2.85, 4.24, and 1.67, respectively. Compared with the metabolism in untreated RLM, the metabolism of (-)-THP and (+)-THP was significantly increased in dexamethasone (Dex)-induced and β-naphthoflavone (β-NF)-induced RLM; meanwhile, the Cl(int) ratios of (+)-THP to (-)-THP in Dex-induced and β-NF-induced RLM were 5.74 and 0.81, respectively. Ketoconazole had stronger inhibitory effect on (+)-THP than (-)-THP, whereas fluvoxamine had stronger effect on (-)-THP in untreated and Dex-induced or β-NF-induced RLM. The results suggested that THP enantiomers were predominately metabolized by CYP3A1/2 and CYP1A2 in RLM, and CYP3A1/2 preferred to metabolize (+)-THP, whereas CYP1A2 preferred (-)-THP.  相似文献   

6.
Myclobutanil, (RS)‐2‐(4‐chlorophenyl)‐2‐(1H‐1, 2, 4‐triazol‐1‐ylmethyl)hexanenitrile is a broad‐spectrum systemic triazole fungicide which consists of a pair of enantiomers. The stereoselective degradation of myclobutanil was investigated in rat liver microsomes. The concentrations of myclobutanil enantiomers were determined by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐(3,5‐dimethyl‐phenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP) under reversed phase condition. The t1/2 of (+)‐myclobutanil is 8.49 min, while the t1/2 of (–)‐myclobutanil is 96.27 min. Such consequences clearly indicated that the degradation of myclobutanil in rat liver microsomes was stereoselective and the degradation rate of (+)‐myclobutanil was much faster than (–)‐myclobutanil. In addition, significant differences between two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (+)‐myclobutanil was about 4‐fold of (–)‐myclobutanil and the CLint of (+)‐myclobutanil was three times as much as (–)‐myclobutanil after incubation in rat liver microsomes. Corresponding consequences may shed light on the environmental and ecological risk assessment for myclobutanil and may improve human health. Chirality 26:51–55, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The pharmacokinetics of the antimalarial drug (+/-)-halofantrine are stereoselective in humans and rats. To better understand the stereoselective metabolism of the drug to its primary metabolite, desbutylhalofantrine (DHF), a series of in vitro and in vivo experiments were undertaken in the rat. Formation of (-)-DHF exceeded that of (+)-DHF in liver microsomes [(-):(+) ratio of intrinsic formation clearances = 1.4]. In contrast, in intestinal microsomes no significant stereoselectivity was noted in the formation of the DHF enantiomers. Intestinal microsomes were also less efficient at producing the DHF enantiomers than were liver microsomes. Based on kinetic analysis of the DHF formation, there appeared to be more than one enzyme involved in the biotransformation. (+/-)-Ketoconazole (KTZ) effectively inhibited the formation of both DHF enantiomers by both liver and intestinal microsomes, although the reduction was more marked in liver microsomes. Through a combination of the use of CYP antibodies and recombinant CYP isoenzymes, the involvement of CYP 2B1/2, 3A1, 3A2, 1A1, 2C11, 2C6, 2D1, and 2D2 were implicated in the metabolism of halofantrine to DHF. Of these, CYP3A1/2 and CYP2C11 appeared to be the primary isoenzymes involved, although CYP2C11 showed greater (+)-DHF than (-)-DHF formation, whereas for CYP3A1 it was similar to the isolated rat liver microsomes. In vivo, oral (+/-)-KTZ caused significant increases in plasma halofantrine and decreases in DHF enantiomer plasma concentrations.  相似文献   

8.
Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(?) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
1. The metabolism in vitro and microsomal interactions of (+)-amphetamine, (-)-amphetamine, (+)-benzphetamine and (-)-benzphetamine were studied with hepatic microsomes from phenobarbitone-pretreated male rabbits. 2. (+)-Benzphetamine was N-demethylated 30-35% faster than (-)-benzphetamine, but the apparent Michaelis constants for the two enantiomers were similar. 3. (-)-Amphetamine was deaminated about 200% faster than (+)-amphetamine. 4. The benzphetamine enantiomers gave qualitatively and quantitatively identical type I microsomal difference spectra (peak, 390nm; trough, 425nm) indicating identical apparent binding affinities for microsomes and identical spectral changes at maxima (DeltaE(max.) values). 5. The amphetamine enantiomers gave qualitatively identical type II microsomal difference spectra (peak, 433nm; trough, 395nm). However, the type II spectral data indicated that (+)-amphetamine had a markedly higher apparent binding affinity than (-)-amphetamine for microsomes. The amphetamine enantiomers gave identical DeltaE(max.) values. 6. The benzphetamine enantiomers (0.5mm) enhanced the rate of microsomal cytochrome P-450 reduction by NADPH by 400-500%, (+)-benzphetamine enhancing the rate 20-25% more than (-)-benzphetamine. 7. The amphetamine enantiomers decreased the rate of microsomal cytochrome P-450 reduction by NADPH. At a concentration of 2mm, (+)-amphetamine decreased the rate more than (-)-amphetamine. 7. All four enantiomers enhanced microsomal NADPH oxidation.  相似文献   

10.
Chiral pesticide enantiomers often show different bioactivity and toxicity; however, this property is usually ignored when evaluating their environmental and public health risks. Hexaconazole is a chiral fungicide used on a variety of crops for the control of many fungal diseases. This use provides opportunities for the pollution of food and soil. In this study, a sensitive and convenient chiral liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for measuring hexaconazole enantiomers in tomato, cucumber, and soil. Separation was by a reversed‐phase Chiralcel OD‐RH column, under isocratic conditions using a mixture of acetonitrile‐2 mM ammonium acetate in water (60/40, v/v) as the mobile phase at a flow rate of 0.4 mL/min. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Then the proposed method was successfully applied to investigate the possible enantioselective degradation of rac‐hexaconazole in plants (tomato and cucumber) and soil under field conditions. The degradation of the two enantiomers of hexaconazole proved to be enantioselective and dependent on the media: The (+)‐enantiomer showed a faster degradation in plants, while the (?)‐enantiomer dissipated faster than the (+)‐form in field soil, resulting in relative enrichment of the opposite enantiomer. The results of this work demonstrate that both the environmental media and environmental conditions influenced the direction and rate of enantioselective degradation of hexaconazole. Chirality 25:160–169, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The new pyridyl imidazolidinone derivative, 1-[5-(4'-chlorobiphenyl-4-yloxy)-3-methylpentyl]-3-pyridin-4-yl-imidazolidin-2-one (+/-)-1a, was synthesized and found to have an excellent antiviral activity against EV71 (IC50 = 0.009 microM). Therefore, both the enantiomers, (S)-(+)-1a and (R)-(-)-1a, have been prepared starting from readily available monomethyl (R)-3-methylglutarate (7) as a useful chiral building block and their antiviral activity was evaluated in a plaque reduction assay. Interestingly, we observed that the enantiomer (S)-(+)-1a was 10-fold more active against enterovirus71 (EV71) (IC50 = 0.003 microM) than the corresponding enantiomer (R)-(-)-1a (IC50 = 0.033 microM). Similar results were found against all five strains (1743, 2086, 2231, 4643, and BrCr) of EV71 tested. This demonstrated that the absolute configuration of the chiral carbon atom at the 3-position of the alkyl linker considerably influenced the anti-EV71 activity of these pyridyl imidazolidinones.  相似文献   

12.
Several important chiral phenethylamine agents such as mexiletine, fenfluramine, amphetamine, methamphetamine and N-n-propylamphetamine show stereoselective disposition in humans and large differences in therapeutic relevance and toxicity. To analyze the enantiomers of chiral amine drugs, stereoselective methods were developed to separate those enantiomers on an achiral capillary gas chromatography by pre-column chiral derivatization with S-(-)-N-(fluoroacyl)-prolyl chloride. The stereoselectivity and sensitivity can be improved by chiral derivatization. The methods established offer enantioselective, simple, flexible and economic approaches for the analysis of chiral amine drug enantiomers in biological fluids. The methods have been used to determine S-(+)-methamphetamine in human forensic samples and to analyze enantiomers of amphetamine and fenfluramine in rat liver microsomes.  相似文献   

13.
Huang L  Lu D  Zhang P  Diao J  Zhou Z 《Chirality》2012,24(8):610-614
Enantioselectivity in ecotoxicity of chiral pesticides in the aquatic environment has been a subject of growing interest. In this study, the toxicological impacts of hexaconazole enantiomers were investigated with freshwater algae Scenedesmus obliquus. After 96 h of exposure, the EC50 values for rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole were 0.178, 0.355, and 0.065 mg l?1, respectively. Therefore, the acute toxicities of hexaconazole enantiomers were enantioselective. In addition, the different toxic effects were evaluated when S. obliquus were exposed to 0.2, 0.5, and 1.0 mg l?1 of rac‐hexaconazole, (+)‐hexaconazole, and (?)‐hexaconazole during 96 h, respectively. The chlorophyll a and chlorophyll b contents of S. obliquus treated by (?)‐hexaconazole were lower than those exposed to (+)‐hexaconazole, whereas the malondialdehyde contents of S. obliquus treated by (?)‐form were higher than those exposed to (+)‐form at higher concentrations. In general, catalase activities were significantly upregulated by exposure to (?)‐enantiomer than (+)‐enantiomer at all three concentrations. However, superoxide dismutase activities exposed to (?)‐hexaconazole were lower than that exposed to (+)‐hexaconazole at 0.2 mg l?1 and 0.5 mg l?1. On the basis of these data, the acute toxicity and toxic effects of hexaconazole against S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk assessment. Chirality 24:610–614, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The enantiomers of 4-tert-butyl-3-isopropyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2 ]octane 1-sulfide (TBIPPS) were prepared in nine steps from diethyl tert-butylmalonate, and their abilities to compete with [3H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2 ]octane (EBOB), a noncompetitive antagonist of ionotropic gamma-aminobutyric acid (GABA) receptors, at their binding site were investigated using rat brain and housefly head membranes. The (S)-(-)-isomer of TBIPPS (IC50 = 398 nM) was more potent than was the (R)-(+)-isomer of TBIPPS (IC50 = 1220 nM) in rat receptors, while the potencies of (S)-TBIPPS 104 nM) and (R)-TBIPPS (IC50 = 94.4 nM) in housefly receptors were almost the same. The different enantiospecificities of rat and housefly receptors indicate that the three-dimensional structure of the binding site might be different between these receptors. In a region of the rat binding site there might be a steric bulk that interacts less favorably with (R)-TBIPPS than with (S)-TBIPPS, while in the corresponding region of the housefly binding site there might not be such a steric bulk that leads to specificity for these compounds.  相似文献   

15.
Zaltoprofen, available commercially as a racemic mixture, is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs). Firstly, (+)- and (-)-zaltoprofen glucuronide was biosynthesized and purified. Then a simple and rapid RP-HPLC analysis method for direct determination of (+)- and (-)-zaltoprofen glucuronide in rat hepatic microsomes was developed and validated. The calibration curves of (+)- and (-)-zaltoprofen glucuronide both showed good linearity in the concentration range from 0.15 to 31.13 μM. The lower limit of quantification was 0.15 μM. Finally, this method was used to investigate the enantioselectivity of zaltoprofen glucuronidation in rat hepatic microsomes. The kinetics of zaltoprofen glucuronidation in rat hepatic microsomes for 40 min incubation fit the Michaelis-Menten model. Kinetic analysis indicated that (-)-zaltoprofen had a higher glucuronidation rate in rat liver microsome than that of (+)-zaltoprofen. The catalyzing efficiency (V(max)/K(m)) ratio of (+)-zaltoprofen to (-)-enantiomer is 0.8 times in rat liver microsomes.  相似文献   

16.
Zhu CJ  Zhang JT 《Chirality》2003,15(5):448-455
To identify which cytochrome P450 (CYP) isoform(s) are responsible for the metabolism of clausenamide (CLA) enantiomers in rats, effects of various CYP isoform inducers and inhibitors on the formation of CLA metabolites were investigated in liver microsomes. In incubations with rat liver microsomes, CLA enantiomers were mainly converted to 4-hydroxy, 5-hydroxy, and 7-hydroxy-metabolites. 4-OH-CLA was the major metabolite of (+)-3R, 4S, 5S, 6R-CLA [(+)-CLA], while 7-OH-CLA was the major one of (-)-3S, 4R, 5R, 6S-CLA [(-)-CLA]. In induction studies, enzymatic parameters were used to assess the role of different CYP forms in CLA hydroxylation reactions. A marked increase in the rate of metabolism of CLA enantiomers was observed in microsomes of dexamethasone treated rats, V(max)/K(m) values for 4-OH-(+)-CLA, 7-OH-, 5-OH-, and 4-OH-(-)-CLA were 5.3, 6.5, 3.0, and 5.9 times higher than those in control microsomes, respectively. Rifampicin treatment caused corresponding 1.7-, 2.6-, 3.1-, and 2.8-fold increases. Dex and Rif also increased in the amount of (+)-5- and (+)-7-OH-CLA that were not detectable in the control group. These results suggested that inducible CYP3A1 was involved in the hydroxylation of CLA enantiomers. In inhibition studies, ketoconazone (6.25 microM) completely inhibited the production of main metabolites of (-)-CLA (100%) and (+)-CLA (97%). Triacetyloleandomycin (12.5 microM) strongly inhibited the corresponding metabolites by 34-85%. These findings also indicated that institutive CYP3A2 shared a major role in the hydroxylation of CLA enantiomers with CYP3A1 in untreated rats. Together, the data suggested that CYP3A was the predominant isoform responsible for the metabolism of CLA enantiomers.  相似文献   

17.
Alpha‐cypermethrin (α‐CP), [(RS)‐a‐cyano‐3‐phenoxy benzyl (1RS)‐cis‐3‐(2, 2‐dichlorovinyl)‐2, 2‐dimethylcyclopropanecarboxylate], comprises a diastereoisomer pair of cypermethrin, which are (+)‐(1R‐cis‐αS)–CP (insecticidal) and (?)‐(1S‐cis‐αR)–CP (inactive). In this experiment, the stereoselective degradation of α‐CP was investigated in rat liver microsomes by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐ (3, 5‐dimethylphenylcarbamate)‐based chiral stationary phase. The results revealed that the degradation of (?)‐(1S‐cis‐αR)‐CP was much faster than (+)‐(1R‐cis‐αS)‐CP both in enantiomer monomers and rac‐α‐CP. As for the enzyme kinetic parameters, there were some variances between rac‐α‐CP and the enantiomer monomers. In rac‐α‐CP, the Vmax and CLint of (+)‐(1R‐cis‐αS)–CP (5105.22 ± 326.26 nM/min/mg protein and 189.64 mL/min/mg protein) were about one‐half of those of (?)‐(1S‐cis‐αR)–CP (9308.57 ± 772.24 nM/min/mg protein and 352.19 mL/min/mg protein), while the Km of the two α‐CP enantiomers were similar. However, in the enantiomer monomers of α‐CP, the Vmax and Km of (+)‐(1R‐cis‐αS) ‐CP were 2‐fold and 5‐fold of (?)‐(1S‐cis‐αR)‐CP, respectively, which showed a significant difference with rac‐α‐CP. The CLint of (+)‐(1R‐cis‐αS)–CP (140.97 mL/min/mg protein) was still about one‐half of (?)‐(1S‐cis‐αR)–CP (325.72 mL/min/mg protein) in enantiomer monomers. The interaction of enantiomers of α‐CP in rat liver microsomes was researched and the results showed that there were different interactions between the IC50 of (?)‐ to (+)‐(1R‐cis‐αS)‐CP and (+)‐ to (?)‐(1S‐cis‐αR)‐CP(IC50(?)/(+) / IC50(+)/(?) = 0.61). Chirality 28:58–64, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Gu X  Wang P  Liu D  Lv C  Lu Y  Zhou Z 《Chirality》2008,20(2):125-129
The stereoselective degradation of the racemic benalaxyl in vegetables such as tomato, tobacco, sugar beet, capsicum, and the soil has been investigated. The two enantiomers of benalaxyl in the matrix were extracted by organic solvent and determined by validated chiral high-performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral column. Rac-benalaxyl was fortified into the soil and foliar applied to vegetables. The assay method was linear over a range of concentrations (0.5-50 microg ml(-1)) and the mean recoveries in all the samples were more than 70% for the two enantiomers. The limit of detection for both enantiomers was 0.05 microg g(-1). The results in soil showed that R-(-)-enantiomer dissipated faster than S-(+)-enantiomer and the stereoselectivity might be caused by microorganisms. In tomato, tobacco, sugar, beet, and capsicum plants, there was significantly stereoselective metabolism. The preferential absorption and degradation of S-(+)-enantiomer resulted an enrichment of the R-(-)-enantiomer residue in all the vegetables.  相似文献   

19.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

20.
It has been proposed that the chiral inversion of the 2-arylpropionic acids is due to the stereospecific formation of the (-)-R-profenyl-CoA thioesters which are putative intermediates in the inversion. Accordingly, amino acid conjugation, for which the CoA thioesters are obligate intermediates, should be restricted to those optical forms which give rise to the (-)-R-profenyl-CoA, i.e., the racemates and the (-)-(R)-isomers. We have examined this problem in dogs with respect to 2-phenylpropionic acid(2-PPA). Regardless of the optical configuration of 2-phenylpropionic acid administered, the glycine conjugate was the major urinary metabolite and this was shown to be exclusively the (+)-(S)-enantiomer by chiral HPLC. Both (-)-(R)- and (+)-(S)-2-phenylpropionic acid were present in plasma after the administration of either antipode, and further evidence of the chiral inversion of both enantiomers was provided by the presence of some 25% of the opposite enantiomer in the free 2-phenylpropionic acid and its glucuronide excreted in urine after administration of (-)-(R)- and (+)-(S)-2-phenylpropionic acid. The (+)-(S)-enantiomer underwent chiral inversion to the (-)-(R)-antipode when incubated with dog hepatocytes. These data suggests that both enantiomers of 2-phenylpropionic acid are substrates for canine hepatic acyl CoA ligase(s) and thus undergo chiral inversion, but that the CoA thioester of only (+)-(S)-2-phenylpropionic acid is a substrate for the glycine N-acyl transferase. These studies are presently being extended to the structure and species specificity of the reverse inversion and amino acid conjugation of profen NSAIDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号