首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol disorders biological membranes causing perturbations in the bilayer and also by altering the physicochemical properties of membrane lipids. But, chronic alcohol consumption also increases nitric oxide (NO) production. There was no systemic study was done related to alcohol-induced production of NO and consequent formation of peroxynitrite mediated changes in biophysical and biochemical properties, structure, composition, integrity and function of erythrocyte membranes in chronic alcoholics. Hence, keeping all these conditions in mind the present study was undertaken to investigate the role of over produced nitric oxide on red cell membrane physicochemical properties in chronic alcoholics. Human male volunteers aged 44 ± 6 years with similar dietary habits were divided into two groups, namely nonalcoholic controls and chronic alcoholics (~125 g of alcohol at least five times per week for the past 10–12 years). Elevated nitrite and nitrate levels in plasma and lysate, changes in erythrocyte membrane individual phospholipid composition, increased lipid peroxidation, protein carbonyls, cholesterol and phospholipids ratio (C/P ratio) and anisotropic value (γ) with decreased sulfhydryl groups and Na+/K+-ATPase activity in alcoholics was evident from this study. RBC lysate NO was positively correlated with C/P ratio (r = 0.547) and anisotropic (γ) value (r = 0.428), Na+/K+-ATPase activity was negatively correlated with RBC lysate NO (r = ?0.372) and anisotropic (γ) value (r = ?0.624) in alcoholics. Alcohol-induced overproduction of nitric oxide reacts with superoxide radicals to produce peroxynitrite, which appears to be responsible for changes in erythrocyte membrane lipids and the activity of Na+/K+-ATPase.  相似文献   

2.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

3.
ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disorder with a significant peripheral component to the disease pathology. This includes an HD-related cardiomyopathy, with an unknown pathological mechanism. In this study, we aimed to define changes in the metabolism of cardiac nucleotides using the well-established R6/2 mouse model. In particular, we focused on measuring the activity of enzymes that control ATP and other adenine nucleotides in the cardiac pool, including eNTPD, AMPD, e5′NT, ADA, and PNP. We employed HPLC to assay the activities of these enzymes by measuring the concentrations of adenine nucleotide catabolites in the hearts of symptomatic R6/2 mice. We found a reduced activity of AMPD (12.9 ± 1.9 nmol/min/mg protein in control; 7.5 ± 0.5 nmol/min/mg protein in R6/2) and e5′NT (11.9 ± 1.7 nmol/min/mg protein in control; 6.7 ± 0.7 nmol/min/mg protein in R6/2). Moreover, we detected an increased activity of ADA (1.3 ± 0.2 nmol/min/mg protein in control; 5.2 ± 0.5 nmol/min/mg protein in R6/2), while no changes in eNTPD and PNP activities were observed. Analysis of cardiac adenine nucleotide catabolite levels revealed an increased inosine level (0.7 ± 0.01 nmol/mg dry tissue in control; 2.7 ±0.8 nmol/mg dry tissue in R6/2) and a reduced concentration of cardiac adenosine (0.9 ± 0.2 nmol/mg dry tissue in control; 0.2 ± 0.08 nmol/mg dry tissue in R6/2). This study highlights a decreased rate of degradation of cardiac nucleotides in HD mouse model hearts, and an increased capacity for adenosine deamination, that may alter adenosine signaling.  相似文献   

4.
Morningness–eveningness and sleep habits relationship were studied between Mexican and Spanish adolescents. A total sample of 611 Mexican and Spanish adolescents (13–15 years old; 14.12 ± 0.75) participated in this comparative study and filled out the preferred timing of sleep and activity using item 19 of Morningness–Eveningness Questionnaire and reported sleep habits from open questions about typical bed and rise times during the weekdays and weekends. Spanish adolescents reported differences in sleep habits according to sex and chronotype, whereas Mexican adolescents only reported differences regarding chronotype on weekends. When country effect was analyzed, the most relevant result was the short sleep length on weekdays of Mexican adolescents (7:11 vs. 8:05), who reported earlier weekday rise time (6:11 vs. 7:15) but similar weekday bedtime (23:00 vs. 23:09) compared to Spanish adolescents. Sleep habits among Mexicans seem more influenced by a social factor related to school schedule than environmental factor related to latitude.  相似文献   

5.
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC’s (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (α/β) β1 isoform of the β subunit of NOGC (NOGCβ1) was specifically focused. NOGCβ1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCβ1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCβ1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 ± 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 ± 3.4 vs. 1.2 ± 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCβ1 abundance was reduced using specific siRNA to NOGCβ1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCβ1 (530.2 ± 141.4 vs. 26.1 ± 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCβ1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 ± 22 vs. 92 ± 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCβ1 and GC-A interact and that NOGCβ1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.  相似文献   

6.
In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US (N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana (N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity.  相似文献   

7.
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.  相似文献   

8.
《Free radical research》2013,47(3):146-153
Abstract

In obese adults with non alcoholic fatty liver disease (NAFLD), treatment with Vitamin E has resulted in an improvement in liver histology, whereas variable and limited results are available in children. Our aim was to assess whether lifestyle combined with supplementation with Vitamin E might reduce oxidative stress and improve cardio-metabolic status in obese children with NAFLD.

24 obese prepubertal children (16M) followed a 6-month lifestyle intervention combined with Vitamin E supplementation (600 mg/day) and they were compared with 21 age and sex-matched obese peers who underwent lifestyle intervention only. At baseline and after 6-month urinary prostaglandin F2α (PGF-2α), endogenous secretory receptor for advanced glycation end products (esRAGE), high sensitivity C-reactive protein (hs-CRP), alanine aminotransferases (ALT), lipid profile, glucose, and insulin were assessed.

The two groups were comparable for age (8.3 ± 1.6 vs 8.4 ± 1.3 yr), sex and BMI SDS (2.16 ± 0.29 vs 2.13 ± 0.28). At the beginning of the study, PGF2-α, esRAGE hsCRP, ALT, lipid profile and HOMA-IR levels were similar between the two groups (all p > 0.05). After 6-month treatment, levels of PGF2-α (p < 0.001) significantly decreased and esRAGE significantly increased (p < 0.001) in children treated with Vitamin E. A significant reduction was also found in ALT (p = 0.001), lipid profile and HOMA-IR (p < 0.001). In contrast, no significant change in any of these markers was detected in the lifestyle only group.

In conclusion, Vitamin E supplementation was associated with a significant reduction in oxidative stress and improved cardio-metabolic alterations. These data suggest that Vitamin E supplementation could represent a valuable treatment in obese children affected by NAFLD.  相似文献   

9.
Serotoninergic control of food intake has been shown to be abnormal in obese persons with a decrease in serotoninergic tone. The neuroendocrine effects of intravenous I.V. administration of clomipramine (CMI), a serotonin uptake inhibitor, were studied in normal-weight (n=7) and obese subjects before (n=12) and after (n=6) dietary restriction. Under double-blind, placebo-controlled conditions, a single 12.5 mg dose of CMI was administered. There was no difference in baseline values of prolactin (PRL), corticotropin (ACTH) and cortisol in non-obese controls, obese before and obese after weight loss. CMI led to significant increases of PRL, ACTH, and cortisol concentrations in the controls as well as the obese group. The ACTH and cortisol responses to CMI in obese subjects were somewhat greater than the responses in normal-weight subjects. The area under the curve AUC for ACTH after clomipramine was 6202 ± 976 pg/ml.150 minutes for the obese before weight loss and 3274 ± 512 pg/ml.150 minutes for the controls and the difference was significant at the level of p=0.052. The cortisol peak value after clomipramine was 163.71 ± 14.31 ng/ml in the non-obese and 214.66 ± 12.59 ng/ml in the obese (p=0.025). However, there was no difference in the obese subjects before and after weight loss. These data support the assumption that obese women have an abnormal sensitivity to the serotoninergic control of the hypothalamic pituitary adrenal axis (HPA), and that a mild weight loss does not significantly modify their serotoninergic tone.  相似文献   

10.
The reactive aldehydes methylglyoxal and glyoxal, arise from enzymatic and non-enzymatic degradation of glucose, lipid and protein catabolism, and lipid peroxidation. In Type 1 diabetes mellitus (T1DM) where hyperglycemia, oxidative stress, and lipid peroxidation are common, these aldehydes may be elevated. These aldehydes form advanced glycation end products (AGEs) with proteins that are implicated in diabetic complications. We measured plasma methylglyoxal and glyoxal in young, complication-free T1DM patients and assessed activity of the ubiquitous membrane enzyme, Na+/K+ ATPase. A total of 56 patients with TIDM (DM group), 6–22 years, and 18 non-diabetics (ND group), 6–21 years, were enrolled. Mean plasma A1C (%) was higher in the DM group (8.5 ± 1.3) as compared to the ND group (5.0 ± 0.3). Using a novel liquid chromatography-mass spectrophotometry method, we found that mean plasma methylglyoxal (nmol/l) and glyoxal levels (nmol/l), respectively, were higher in the DM group (841.7 ± 237.7, 1051.8 ± 515.2) versus the ND group (439.2 ± 90.1, 328.2 ± 207.5). Erythrocyte membrane Na+/K+ ATPase activity (nmol NADH oxidized/min/mg protein) was elevated in the DM group (4.47 ± 0.98) compared to the ND group (2.16 ± 0.59). A1C correlated with plasma methylglyoxal and glyoxal, and both aldehydes correlated with each other. A high correlation of A1C with Na+/K+ ATPase activity, and a regression analysis showing A1C as a good predictor of activity of this enzyme, point to a role for glucose in membrane alteration. In complication-free patients, increased plasma methylglyoxal, plasma glyoxal, and erythrocyte Na+/K+ ATPase activity may foretell future diabetic complications, and emphasize a need for aggressive management.  相似文献   

11.
《Endocrine practice》2015,21(2):165-173
ObjectiveThe objective of this study was to evaluate differences in cardiovascular disease (CVD) risk markers in obese adolescents based on diabetes status and race in order to improve risk-reduction intervention strategies.MethodsThis was a retrospective, cross-sectional study of obese adolescents, age 10 to 21 years, who were evaluated at Children’s of Alabama between 2000 and 2012. Subjects were classified by glycated hemoglobin (HbA1c) as having normoglycemia, prediabetes, or type 2 diabetes mellitus (T2DM).ResultsThere were a total of 491 African American (AA) or Caucasian American (CA) subjects. Body mass index was not different between HbA1c and racial groups. Compared to subjects with normoglycemia or prediabetes, subjects with T2DM had higher levels of total cholesterol (TC) (178.6 ± 43.8 mg/dL vs. 161.5 ± 32.5 mg/dL vs. 162.4 ± 30.6 mg/dL; P < .0001) and low-density-lipoprotein cholesterol (107.4 ± 39.2 mg/dL vs. 97.0 ± 31.0 mg/dL vs. 97.5 ± 26.9 mg/dL; P = .0073). Compared with AA subjects, CA subjects had lower high-density-lipoprotein cholesterol (HDL-C) levels (40.4 ± 10.4 mg/dL vs. 44.3 ± 11.9 mg/dL; P = .0005) and higher non-HDL-C levels (129.6 ± 36.2 mg/dL vs. 122.5 ± 37.5 mg/dL; P = .0490). Of the characteristics studied, HbA1c had the most significant positive association with dyslipidemia and was strongly correlated with both TC (β, 4.21; P < .0001) and non-HDL-C (β, 4.3; P < .0001).ConclusionObese adolescents with T2DM have more abnormal lipoprotein profiles than those with normoglycemia or prediabetes. Obese CA adolescents have more abnormal lipids than obese AA adolescents. HbA1c was the characteristic most highly associated with abnormal lipoprotein profiles in our subjects. Our results show that CVD risk markers in obese adolescents vary by race and HbA1c concentration. (Endocr Pract. 2015;21:165-173)  相似文献   

12.
Plasma and erythrocyte lipid peroxidation levels of 20 patients with histopathologically confirmed testis cancer and 20 healthy control individuals were studied between November 1995 and June 1997. The group with testis cancer had a mean age of 24.8±8.2 yr and the control group’s mean age was 28.3±6.9 yr. Stage distribution of the testis cancer cases were 4 of stage A, 10 of stage B, and 6 of stage C. Blood samples of the patients were drawn after orchiectomy and after 12 h fasting before chemotherapy. Mean plasma and erythrocyte lipid peroxidation levels were detected to be 14.51±5.30 nmol malondialdehide (MDA)/mL and 9.30±2.06 nmol MDA/g hemoglobin (Hb), respectively, in the testis cancer group, whereas the healthy control group had mean plasma and erythrocyte lipid peroxidation levels of 10.7±1.82 nmol MDA/mL and 6.18±1.68 nmol MDA/g Hb, respectively. Plasma and erythrocyte lipid peroxidation values of the testis cancer patients were determined to be statistically significantly higher than that of the health control group (p<0.001, p<0.001). No significant correlation was determined between plasma, erythrocyte lipid peroxidation levels and tumor markers. In conclusion, it can be said that an increase in the lipid peroxidation may play a role in the pathogenesis of testis carcinomas in addition to the other causes.  相似文献   

13.
《Free radical research》2013,47(6):287-293
An in vitro assay for the simultaneous measurement of lipid peroxidation (LPO) and bilirubin degradation BRD) activities in rat liver microsomes has been developed; a good correlation between the 2 activities was observed (r = 0.78). In the Gunn rat a lipid free diet caused an increase in plasma bilirubin (62.4 ± 25.8%, n = 6) and a concomitant decrease in both hepatic microsomal LPO and BRD to zero. In contrast, on a 25% lipid diet there was a decrease in plasma bilirubin (46.1 ± 3.6%; n = 8) associated with an increase in LPO (1.26 ± 0.11 nmol/min/mg protein, and BRD (0.21 ± 0.6 nmol/min/mg protein). Therefore, in the absence of bilirubin glucuronidation, dietary modulation of plasma bilirubin and lipid peroxidation appear to be closely associated.  相似文献   

14.
The aim of this study was to assess the relationship between magnesium status and oxidative stress in obese and nonobese women. This cross-sectional study included 83 women, aged between 20 and 50 years, who were divided into two groups: the obese group (n = 31) and the control group (n = 52). The control group was age-matched with the obese group. Magnesium intake was monitored using 3-day food records and NutWin software version 1.5. The plasma and erythrocyte magnesium concentrations were determined by flame atomic absorption spectrophotometry. Plasma levels of thiobarbituric acid reactive substances (TBARS) were determined as biomarkers for lipid peroxidation and therefore of oxidative stress. The mean values of the magnesium content in the diet were found to be lower than those recommended, though there was no significant difference between groups (p > 0.05). The mean concentrations of plasma and erythrocyte magnesium were within the normal range, with no significant difference between groups (p > 0.05). The mean concentration of plasma TBARS was higher in obese woman, and the difference between the groups was statistically different (p < 0.05). There was a positive correlation between erythrocyte magnesium and plasma TBARS in the obese group (p = 0.021). Obese patients ingest low dietary magnesium content, which does not seem to affect the plasma and erythrocyte concentrations of the mineral. The study showed a negative correlation between erythrocyte magnesium concentrations and plasma TBARS, suggesting the influence of magnesium status on the parameters of oxidative stress in obese women.  相似文献   

15.
Bilayers of human erythrocyte apoprotein-lipid complexes were made by dipping a mica plate through monolayers of the complex formed at the air-water interface. Stearic acid and erythrocyte lipid alone served as controls. Freeze-fracture images of the complex at high lipid surface pressures (30 dynes/cm) showed particles (average diameter, 109 Å ± 18 Å) similar to those of erythrocyte ghosts (average diameter, 102 Å ± 19 Å). Control surfaces were smooth. We conclude that part or all of the protein molecule penetrated into the lipid bilayer and that erythrocyte apoprotein-lipid complexes yield fracture faces similar to the native erythrocyte membrane.  相似文献   

16.
Probiotic therapies are going to be an effective alternative therapeutic strategy in the treatment and management of diabetes. The mechanism behind the essential effects of probiotic therapies in diabetic patients was not fully understood. The objective of this study was to evaluate the effects of probiotic soy milk containing Lactobacillus planetarum A7 on inflammation, lipid profile, fasting blood glucose, and serum adiponectin among patients with type 2 diabetes mellitus. Forty patients with type 2 diabetes, at the age of 35–68 years old, were assigned to two groups in this randomized, double-blind, controlled clinical trial. The patients in the intervention group consumed 200 ml/day of probiotic soy milk containing L. planetarum A7 and those in control group consumed 200 ml/day of pure soy milk for 8 weeks. Serum TNF-α, C reactive protein, adiponectin, lipid profile, and fasting blood glucose were determined before and after intervention. In intervention group, serum adiponectin in pre- and post-treatment did not show any significant changes (2.52 ± 0.74 vs 2.84 ± 0.61, P = 0.658), as well as changes in serum TNF-α and C reactive protein (172.44 ± 5.7 vs 172.83 ± 7.6, P = 0.278, 4.2 ± 1.4 vs 4.5 ± 1.9, P = 0.765, respectively). Low-density cholesterol and high-density cholesterol changed significantly (P = 0.023, P = 0.017, respectively), but fasting blood glucose did not show any significant changes. The results of this study showed that consumption of probiotic soy milk and soy milk has no effect on serum adiponectin and inflammation, but it can change lipid profile among type 2 diabetic patients.  相似文献   

17.
Objective: To explore the activity of monoamine oxidases (MAOs) and semicarbazide‐sensitive amine oxidases (SSAOs) in adipose tissue and blood of lean and moderately obese subjects and to study whether there is a link between these hydrogen peroxide‐generating enzymes and blood markers of oxidative stress. Research Methods and Procedures: Nine obese male subjects (BMI 32.6 ± 0.4 kg/m2) and nine controls (BMI 23.4 ± 0.5) of 24‐ to 40‐year‐old subjects were included in the study. MAO and SSAO activities were measured on microbiopsies of abdominal subcutaneous adipose tissue by quantifying 14C‐tyramine and 14C‐benzylamine oxidation. Levels of soluble SSAO, lipid peroxidation products, and antioxidant agents were measured in plasma, whereas cytoprotective enzymes were determined in blood lysates. Results: The high MAO activity found in adipose tissue was diminished by one‐half in obese subjects (maximum initial velocity of 1.2 vs. 2.3 nmol tyramine oxidized/mg protein/min). There was no change in SSAO activity, either under its adipose tissue‐bound or plasma‐soluble form. Plasma levels of lipid peroxidation products and antioxidant vitamins remained unmodified, as well as erythrocyte antioxidant enzymes, whereas circulating triglycerides, insulin, and leptin were increased. Discussion: Although they already exhibited several signs of endocrino‐metabolic disorders, the obese men did not exhibit the increase in blood markers of oxidative stress or the decrease in antioxidant defenses reported to occur in very obese or diabetic subjects. The reduced MAO and the unchanged SSAO activities found in obesity suggest that these hydrogen peroxide‐generating enzymes expressed in adipocytes are probably not involved in the onset of the oxidative stress found in severe obesity and/or in its complications.  相似文献   

18.
Artificial hypothermic state of homeothermic animals contributes to the stimulation of free radical processes in red blood cells. In order to understand what are the consequences of oxidative damage of erythrocyte membrane, we examined the dependence of the kinetic characteristics of integral membrane enzyme acetylcholinesterase (AChE) and structural and functional state of the membrane on the duration of mild hypothermia. For this purpose we reduced body temperature of adult Wistar rats by external cooling to 30°C (short-term moderate hypothermia) and then prolonged hypothermia up to 1.5 and 3 h. A short-term hypothermia was followed with an increase in V max and a decrease in K m, promoting an increase in the catalysis effectiveness.The optimum point on the graph of the concentration dependence was shifted to the area of lower concentrations, and the character of enzyme–substrate interactions at high concentrations of the enzyme changed. Upon prolongation of hypothermia, changes in the AChE kinetic characteristics favored normalization of the enzyme activity and concentration dependence. To test the hypothesis of a possible influence of the lipid matrix on the kinetic characteristics of AchE, we studied structural properties of the erythrocyte membranes using fluorescent probe pyrene. The observed changes in the structural and dynamic characteristics of erythrocyte membranes after a 1.5-h hypothermia suggested a reduction in microviscosity of both total and annular lipids. Prolongation of hypothermia up to 3 h favored normalization of this parameter. It was found that the indicators of the structural state of erythrocyte membranes at different durations of hypothermia correlate with certain kinetic characteristics of AChE. The data indicate that the prolongation of mild hypothermia up to 3 h triggers adaptive mechanisms directed to normalization of the erythrocytes membrane functioning.  相似文献   

19.
The access of the young people to the university marks a fundamental break in their lives that may also result in a substantial change in their dietary habits. The aim of this study was to characterize the food patterns, body composition and biochemical profiles of Galician university students from the University of Santiago de Compostela (Campus de Lugo). A total of 62 students participated in this survey. For each individual, anthropometric parameters, blood pressure, blood glucose and lipid profile were measured. Also, the participants filled questionnaires of dietary habits, Mediterranean and Atlantic diet adherence, risk of type II diabetes and physical activity, lifestyle and personal and family histories. A BMI within the normal range was shown by 72% of students. Eight volunteers (12.90%) presented high levels of total cholesterol (>200 mg/dL), and 54.55% of women had levels of HDL-cholesterol above 60 mg/dL. Five students had levels of glucose above 100 mg/dL, being four men and one woman. None of the participants presented high blood pressure, but 11.29% were in pre-hypertension status. The intake of carbohydrates was below the recommendations, while protein and lipids were above. There was an excessive consumption of bakery, alcohol beverages, sausages and ready-made food. The students showed medium adherence to Atlantic and Mediterranean diet and low risk of type II diabetes mellitus and a sedentary lifestyle. Since university students are a group especially prone to poor dietary habits, it seems necessary to promote changes towards healthier meals and rescue the Mediterranean-like dietary pattern.  相似文献   

20.
Unilamellar liposomes are used as a simple two-compartment model to study the interaction of antioxidants. The vesicle membrane can be loaded with lipophilic compounds such as carotenoids or tocopherols, and the aqueous core space with hydrophilic substances like glutathione (GSH) or ascorbate, mimicking the interphase between an aqueous compartment of a cell and its surrounding membrane.

Unilamellar liposomes were used to investigate the interaction of GSH with the carotenoids lutein, β-carotene and lycopene in preventing lipid peroxidation. Lipid peroxidation was initiated with 2,2′-azo-bis-[2,4-dimethylvaleronitrile] (AMVN). Malondialdehyde (MDA) formation was measured as an indicator of oxidation; additionally, the loss of GSH was followed. In liposomes without added antioxidant, MDA levels of 119 ± 6 nmol/mg phospholipid were detected after incubation with AMVN for 2 h at 37°C. Considerably lower levels of 57 ± 8 nmol MDA/mg phospholipid were found when the liposomal vesicles had been loaded with GSH. Upon incorporation of β-carotene, lycopene or lutein, the resistance of unilamellar liposomes towards lipid peroxidation was further modified. An optimal further protection was observed with 0.02 nmol β-carotene/mg phospholipid or 0.06 nmol lycopene/mg phospholipid. At higher levels both these carotenoids exhibited prooxidant effects. Lutein inhibited lipid peroxidation in a dose-dependent manner between 0.02 and 2.6 nmol/mg phospholipid. With increasing levels of lycopene and lutein the consumption of encapsulated GSH decreased moderately, and high levels of β-carotene led to a more pronounced loss of GSH.

The data demonstrate that interactions between GSH and carotenoids may improve resistance of biological membranes towards lipid peroxidation. Different carotenoids exhibit specific properties, and the level for optimal protection varies between the carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号