首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The specific radioligand binding of serotonin 5-HT1A and 5-HT2 receptors was determined in the frontal cortex and in the hypothalamus of Norway rats and silver foxes. Aggressive wild rats and silver foxes and animals selected for many generations for nonaggressive behavior towards man (domestication) were compared. The binding of the 5-HT1A receptors was found to be significantly higher in domesticated Norway rats and lower in domesticated foxes than in aggressive animals. The specific binding of the 5-HT2 receptors was found to be similar in aggressive and domesticated animals, both in rats and foxes. The data obtained indicate the involvement of 5-HT1A receptors in the hypothalamus into the process of domestication.  相似文献   

2.
R Maggi  P Limonta  D Dondi  L Martini  F Piva 《Life sciences》1989,45(22):2085-2092
The experiments to be described have been designed in order to: (a) provide new information on the concentrations of opioid kappa receptors in different regions of the brain of the male rats; and (b) to analyze whether the density of brain kappa receptors might be modified by the process of aging. The concentration of kappa receptors was investigated in the hypothalamus, amygdala, mesencephalon, corpus striatum, hippocampus, thalamus, frontal poles, anterior and posterior cortex collected from male rats of 2 and 19 months of age. 3H-bremazocine (BRZ) was used as the ligand of kappa receptors, after protection of mu and delta receptors respectively with dihydromorphine and d-ala-d-leu-enkephalin. The results obtained show that: (1) in young male rats, the number of kappa opioid receptors is different in the various brain areas examined: the hypothalamus and the striatum have a concentration of kappa binding sites which is significantly higher than that found in the mesencephalon and in the amygdala; much lower concentrations of kappa binding sites have been found in the thalamus, the frontal poles, the hippocampus, the anterior and posterior cerebral cortex. (2) Aging exerts little influence on the number of kappa receptors in the majority of the brain structures considered. However in the amygdala and in the thalamus the number of kappa receptors was increased in old animals. To the authors' knowledge, the data here presented are the first ones which suggest that age may increase rather than decrease the number of neurotransmitter receptors in the brain.  相似文献   

3.
Inherited and modificational changes of the stress reactivity in two outbreed stocks of wild Norway rats trapped in nature and selected for behaviour were studied. During 18 generations the rats of one stock were selected for the lack of defensive behaviour in the glove test (tame), while in another stock the aggressiveness was maintained by the selection (aggressive). Interstock differences in the brain noradrenaline mechanisms were observed. The emotional stress reactivity of the tame animals was decreased, in comparison with the aggressive ones. Definitive stress reactivity of adult rats was modified by injections of hydrocortisone to their mothers on the 16 and 18 days of gestation. Hormonal treatment changed noradrenaline mechanisms and decreased the reaction to emotional stressor in aggressive rats. The modified level of the stress reactivity of aggressive rats was similar to the definitive level of the tame ones. Hormonal treatment did not modify stress reactivity in tame rats. Thus, the phenotype only emerging in aggressive rats, as a result of hormonal modification, is the inherited norm of the tame animals. However, due to rat selection for the lack of defensive behaviour towards the man, high corticosteroid level in the blood of pregnant females, an external developmental factor, in respect to the fetus, loses regulatory function during the development of the neuroendocrine mechanisms of the stress reaction.  相似文献   

4.
The [3H]ketanserin binding characteristics in the apomorphine-induced aggressive and nonaggressive adult male Wistar rats were studied. Repeated apomorphine (0.5 mg/kg, once daily) treatment gradually induced aggressive behaviour in sixteen animals from twenty. Thereafter the animals were retrospectively divided into apomorphine-induced aggressive and nonaggressive group. The maximal number of the [3H]ketanserin binding sites was increased in the apomorphine-treated animals in the frontal (233.9+/-26.5, 364.6+/-31.7, and 367.0+/-34.8 fmol/mg protein for the vehicle, apomorphine-nonaggressive, and apomorphine-aggressive group, respectively) and cerebral cortex (164.2+/-6.7, 289.7+/-29.3, and 249.0+/-15.4 fmol/mg protein for the vehicle, apomorphine-nonaggressive, and apomorphine-aggressive group, respectively). In conclusion, our experiments demonstrate that repeated apomorphine treatment upregulates the maximal number of the 5-HT2A receptors in rat frontal and cerebral cortex as measured by [3H]ketanserin binding and this phenomenon is independent from the development of aggressive behaviour.  相似文献   

5.
In vivo regulation of the serotonin-2 receptor in rat brain   总被引:1,自引:0,他引:1  
Serotonin-2 (5-HT-2) receptors in brain were measured using [3H]ketanserin. We examined the effects of amitriptyline, an antidepressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on [3H]ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC50 nor the Hill coefficient of 5-HT in competing for [3H]ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of [3H]5-HT or [3H]imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. While depleting 5-HT alone (5,7-DHT or PCPA) does not alter [3H]ketanserin binding to 5-HT-2 receptors, intact 5-HT axons are necessary for the adaptive up-regulation of the receptor following ECS.  相似文献   

6.
Trifluoperazine dihydrochloride (2.8–4.0 mg/kg/day) was administered continuously to rats in drinking water for six months. Animals killed at this time exhibited an increase in the number of dopamine receptors in the striatum and mesolimbic area, with a corresponding decrease in affinity (increase in the dissociation constant) for 3H-spiperone binding. In frontal cortex, 3H-spiperone binding to 5-HT receptors indicated no apparent change in numbers of receptors, but a slight increase in the dissociation constant. There was no obvious alteration in 3H-apomorphine binding in the striatum and mesolimbic area, but the individual results were very variable. The number and binding affinity of muscarinic receptors in striatum, mesolimbic area and cerebral cortex as identified by 3H-dexetemide were unchanged. Nor was there any alternation in the number or binding affinity of H-1 receptors identified by 3H-mepyramine, or of α-noradrenergic receptors identified by 3H-WB 4101, in cerebral cortex. The number and binding affinity of GABA receptors in the cerebellum identified by 3H-muscimol also was not altered.Chronic neuroleptic administration to rats appears to alter specifically the number of cerebral dopamine receptors.  相似文献   

7.
《Life sciences》1995,57(5):PL63-PL69
Changes in benzodiazepine binding sites labeled by [3H]flunitrazepam (FNZ) in twenty discrete brain regions of rats made tolerant to and dependent upon pentobarbital were examined. Animals were rendered tolerant by intracerebroventricular (i.c.v) infusion with pentobarbital (300 μg/ 10 μ1/ hr for six days) through pre-implanted cannulae connected to osmotic mini-pumps. The pentobarbital dependence was assessed 24 hr after abrupt withdrawal from pentobarbital. In the tolerant rats, a significant increase in [3H]FNZ binding sites was found in layer IV of frontal cortex and the molecular layer of olfactory bulb. [3H]FNZ binding sites in the pentobarbital dependent rats were significantly increased in layers I-III and V-VI of frontal cortex, caudate-putamen, olfactory tubercle, globus pallidus and ventral pallidum, in addition to those observed in the tolerant group. There was, however, no significant difference in the hippocampus and several regions in the hindbrain in either pentobarbital-treated group. Taken together with characteristics of subtypes of benzodiazepine receptors and changes in GABA-benzodiazepine receptor complexes elucidated in our previous studies, these findings suggest that both types of benzodiazepine receptors are involved in the development of pentobarbital intoxication mediated by GABAA receptors.  相似文献   

8.
Effects of thyroid hormone deficiency on 5-HT1A receptors, 5-HT2A receptors and serotonin transporter in the brain were studied in thyroidectomised Wistar rats receiving an iodine-free diet and receiving 15 micrograms/kg of thyroxine for 21 days. Binding of 3H-8-OH-DPAT to 5-HT1A receptors and 3H-cytalopram to serotonin transporter were unchanged in hypothyroid rats as compared to the control. 3H-ketanserin binding to 5-HT2A receptors was significantly decreased in the frontal cortex in hypothyroid rats. The cortical 3H-ketanserin binding in thyroidectomised rats was normalised after thyroxine replacement. The data suggest that the decrease in the cortical 5-HT2A receptors is the main consequence of impairing effect of hypothyroidism on serotonin neurotransmission.  相似文献   

9.
3H-N-methylspiperone (3H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of 3H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of 3H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1,000 micrograms/kg. Between 0.01 and 10 micrograms/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of 3H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 receptors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to 3H-spiperone, 3H-NMSP results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and displays more than a two-fold higher brain uptake.  相似文献   

10.
The present experiments show that N-[3H]-methylcarbamylcholine ([3H]MCC) binds specifically and with high affinity to rat hippocampus, frontal cortex, and striatum. The highest maximal density of binding sites was apparent in frontal cortex and the lowest in hippocampus. [3H]MCC binding was potently inhibited by nicotinic, but not muscarinic, agonists and by the nicotinic antagonist dihydro-beta-erythroidine in all three brain regions studied. The effect of unlabeled MCC on acetylcholine (ACh) release from slices of rat brain was tested. The drug significantly enhanced spontaneous ACh release from slices of hippocampus and frontal cortex, but not from striatal slices. This effect of MCC to increase ACh release from rat hippocampus and frontal cortex was antagonized by the nicotinic antagonists dihydro-beta-erythroidine and d-tubocurarine, but not by alpha-bungarotoxin or by the muscarinic antagonist atropine. The MCC-induced increase in spontaneous ACh release from hippocampal and frontal cortical slices was not affected by tetrodotoxin. The results suggest that MCC might alter cholinergic transmission in rat brain by a direct activation of presynaptic nicotinic receptors on the cholinergic terminals. That this alteration of ACh release is apparent in hippocampus and frontal cortex, but not in striatum, suggests that there may be a regional specificity in the regulation of ACh by nicotinic receptors in rat brain.  相似文献   

11.
Studies have been made on the density of receptors and dissociation constants for dopamine D1- and D2-receptors in the striatum, n. accumbens with the olfactory tubercles and in the frontal cortex of Wistar rats, Norway rats and silver foxes. D1 binding was found to be significantly higher than D2 one in all the analysed brain structures of the animals studied, especially in the striatum. Although the analysis of D1- and D2-receptor binding kinetics revealed differences in Wistar and Norway rats, more significant differences were found between rats and silver foxes.  相似文献   

12.
The number of serotonin type 2 receptors (S2) was measured in the frontal cortex of mice belonging to 7 inbred strains using specific 3H-spiperone binding. In the same mice, measurements were also taken of the number of 5-hydroxytryptophan-induced (200 mg/kg i.p.) of head twitches (HT). A significant positive interspecific correlation was demonstrated between the number of S2 and HT. The conclusion is drawn that in the frontal cortex 3H-spiperone is bound to functionally active S2 and that the intensity of HT is largely controlled by the genetically determined number of S2 in the brain.  相似文献   

13.
Methylazoxymethanol (MAM)-induced cerebral hypoplasia resulted in a significant increase in densities of both serotonin uptake sites in frontal cortex and dopamine uptake sites in striatum, suggesting serotonergic and dopaminergic axon terminals were compressed in the smaller brain volumes. The density of S2 serotonin receptors in MAM-lesioned frontal cortex was decreased probably due to down-regulation, while densities of D1 and D2 dopamine receptors in striatum were identical between MAM-lesioned rats and control rats.  相似文献   

14.
We found that chronic lithium diet affects the sensitivity of neuroleptic receptors and the content of amino acids in the brain, and that the changes in adult animals differ from those in young rats. Pregnant rats were kept on lithium diet (pellets with 0.21% Li2CO3 and 0.21% NaCl) during the gestation period and the offspring were kept on lithium for six weeks after delivery. Control rats were kept on normal diet under identical conditions. In corpus striatum and cerebral cortex of lithium-treated young rats a reduction in apparent dissociation constant and no change in (3H)spiperone total binding sites were found, suggesting a sensitization of the neuroleptic receptor; this result was unlike that obtained with adult lithium-treated rats, where the total number of binding sites was decreased. The lithium content of brain was very high (2.32 meq/kg of wet weight), whereas in the serum only 0.75 meq/l was recorded. K+ and Na+ levels increased by 20% and 9% respectively in the brain and remained at normal levels in the serum. Analysis of free amino acids in the cerebral cortex, midbrain, and cerebellum showed increases in GABA and glycine levels in all three regions, a significant increase in taurine in midbrain, and an increase in lysine in cerebral cortex and cerebellum. The results indicate that the effect of chronic dietary lithium given during pregnancy on the neuroleptic receptor in young rats is different from that in adult animals. It produces an increase in the number of the neuroleptic receptor sites instead of the decline in the number of binding sites found in adult rats. It remains to be established whether this effect is related more to the age of the animal tested or to the stage of development of the CNS at which the lithium was administered.  相似文献   

15.
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (?2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (?1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (?2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.  相似文献   

16.
Equilibrium binding of [3H]dihydromorphine was assayed in brain regions of young and aged male F344 rats. Young rats had significantly higher receptor densities than old rats in the frontal poles, anterior cortex, and striatum. In the frontal poles, the decline in receptor concentration with age was accompanied by a significant increase in the apparent affinity of dihydromorphine for receptors, which may be compensatory for the decrease in Bmax. This pattern of receptor alterations is different than that previously observed in aged female rats. Therefore, processes which underlie synaptic alterations with age may be different in males and females.  相似文献   

17.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

18.
The hypothesis was tested that one of the critical mechanisms underlying genetically determined aggressiveness involves brain serotonin 5-HT(1A)-receptors. The expression of 5-HT(1A)-receptor mRNA in brain structures and functional correlate for 5-HT(1A)-receptors identified as 8-OH-DPAT-induced hypothermia were studied in Norway rats bred over the course of 59 generations for the low and high affective (defensive) aggressiveness with respect to man and in highly aggressive (offensive) MAO A-knockout mice (Tg8 strain). Considerable differences between the aggressive and the nonaggressive animals were shown. Agonist of 5-HT(1A)-receptor 8-OH-DPAT (0.5 mg/kg for rats and 2.0 mg/kg for mice, i.p.) produced a distinct hypothermic reaction in nonaggressive rats and mice and did not affect significantly the body temperature in aggressive animals. In aggressive rats, a significant reduction of the expression of 5-HT(1A)-receptor mRNA was found in the midbrain. In Tg8 mice, 5-HT(1A)-receptor mRNA level was increased in the frontal cortex and amygdala and not changed in the hypothalamus and the midbrain. The results provide support for the idea that brain 5-HT(1A)-receptors contribute to the genetically determined individual differences in aggressiveness.  相似文献   

19.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

20.
A Maggi  I Zucchi 《Life sciences》1987,40(12):1155-1160
The pattern of distribution of the progesterone binding sites was examined in selected nuclei of the brain of male and female rat. In female rats the frontal cortex resulted to be the region with the highest concentration of 3H R5020 binding sites. However, in male rats the same region showed very little progestin binding activity. When female rats were androgenized via neonatal exposure to testosterone, the progestin binding activity of the frontal cortex became similar to that we observed in male rats. The present investigation indicates that sexual differentiation of the rat brain may include also brain regions not clearly involved in sex related functions like the frontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号