首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

2.
We investigate, here, the mechanism of the costimulatory signals for CD8 T cell activation and confirm that costimulation signals via CD28 do not appear to be required to initiate proliferation, but provide survival signals for CD8 T cells activated by TCR ligation. We show also that IL-6 and TNF-alpha can provide alternative costimulatory survival signals. IL-6 and TNF-alpha costimulate naive CD8 T cells cultured on plate-bound anti-CD3 in the absence of CD28 ligation. They act directly on sorted CD8-positive T cells. They also costimulate naive CD8 T cells from Rag-2-deficient mice, bearing transgenic TCRs for HY, which lack memory cells, a potential source of IL-2 secretion upon activation. IL-6 and TNF-alpha provide costimulation to naive CD8 T cells from CD28, IL-2, or IL-2Ralpha-deficient mice, and thus function in the absence of the B7-CD28 and IL-2 costimulatory pathways. The CD8 T cell generated via the anti-CD3 plus IL-6 and TNF-alpha pathway have effector function in that they express strong cytolytic activity on Ag-specific targets. They secrete only very small amounts of any of the cytokines tested upon restimulation with peptide-loaded APC. The ability of the naive CD8 T cells to respond to TCR ligation and costimulatory signals from IL-6 and TNF-alpha provides a novel pathway that can substitute for signals from CD4 helper cells or professional APC. This may be significant in the response to viral Ags, which can be potentially expressed on the surface of any class I MHC-expressing cell.  相似文献   

3.
CD28 is well characterized as a costimulatory molecule in T cell activation. Recent evidences indicate that TNFR superfamily members, including glucocorticoid-induced TNFR-related protein (GITR), act as costimulatory molecules. In this study, the relationship between GITR and CD28 has been investigated in murine CD8(+) T cells. When suboptimal doses of anti-CD3 Ab were used, the absence of GITR lowered CD28-induced activation in these cells whereas the lack of CD28 did not affect the response of CD8(+) T cells to GITR costimulus. In fact, costimulation of CD28 in anti-CD3-activated GITR(-/-) CD8(+) T cells resulted in an impaired increase of proliferation, impaired protection from apoptosis, and an impaired rise of activation molecules such as IL-2R, IL-2, and IFN-gamma. Most notably, CD28-costimulated GITR(-/-) CD8(+) T cells revealed lower NF-kappaB activation. As a consequence, up-regulation of Bcl-x(L), one of the major target proteins of CD28-dependent NF-kappaB activation, was defective in costimulated GITR(-/-) CD8(+) T cells. What contributed to the response to CD28 ligation in CD8(+) T cells was the early up-regulation of GITR ligand on the same cells, the effect of which was blocked by the addition of a recombinant GITR-Fc protein. Our results indicate that GITR influences CD8(+) T cell response to CD28 costimulation, lowering the threshold of CD8(+) T cell activation.  相似文献   

4.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

5.
CD4(+)CD25(+) regulatory T (Treg) cells naturally occur in mice and humans, and similar Treg cells can be induced in vivo and in vitro. However, the molecular mechanisms that mediate the generation of these Treg cell populations remain unknown. We previously described anti-4C8 mAbs that inhibit the postadhesive transendothelial migration of T cells through human endothelial cell monolayers. We demonstrate in this work that Treg cells are induced by costimulation of CD4(+) T cells with anti-CD3 plus anti-4C8. The costimulation induced full activation of CD4(+) T cells with high levels of IL-2 production and cellular expansion that were comparable to those obtained on costimulation by CD28. However, upon restimulation, 4C8-costimulated cells produced high levels of IL-10 but no IL-2 or IL-4, and maintained high expression levels of CD25 and intracellular CD152, as compared to CD28-costimulated cells. The former cells showed hyporesponsiveness to anti-CD3 stimulation and suppressed the activation of bystander T cells depending on cell contact but not IL-10 or TGF-beta. The suppressor cells developed from CD4(+)CD25(-)CD45RO(+) cells. The results suggest that 4C8 costimulation induces the generation of Treg cells that share phenotypic and functional features with CD4(+)CD25(+) T cells, and that CD25(-) memory T cells may differentiate into certain Treg cell subsets in the periphery.  相似文献   

6.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

7.
Previously, we have shown that priming of therapeutic CD8(+) T cells in tumor vaccine-draining lymph nodes of mice vaccinated with GM-CSF secreting B16BL6 melanoma cells occurs independent of CD4 T cell help. In this study, we examined the contribution of the major costimulatory molecules, CD40 ligand (CD40L), CD80, and CD86, in the priming of CD8(+) T cells. Priming of therapeutic CD8(+) T cells by a GM-CSF-transduced tumor vaccine did not require CD40 and CD40L interactions, as therapeutic T cells could be generated from mice injected with anti-CD40L Ab and from CD40L knockout mice. However, costimulation via either CD80 or CD86 was required, as therapeutic T cells could be generated from mice injected with either anti-CD80 or anti-CD86 Ab alone, but administration of both Abs completely inhibited the priming of therapeutic T cells. Blocking experiments also identified that priming of therapeutic T cells in MHC class II-deficient mice required TNFR and IL-12 signaling, but signaling through CD40, lymphotoxin-betaR, or receptor activator of NF-kappaB was not essential. Thus, cross-priming of therapeutic CD8(+) T cells by a tumor vaccine transduced with GM-CSF requires TNFR, IL-12, and CD28 signaling.  相似文献   

8.
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.  相似文献   

9.
T cells require both primary and costimulatory signals for optimal activation. The primary Ag-specific signal is delivered by engagement of the TCR. The second Ag-independent costimulatory signal is mediated by engagement of the T cell surface costimulatory molecule CD28 with its target cell ligand B7. However, many tumor cells do not express these costimulatory molecules. We previously constructed phage display derived F(AB), G8, and Hyb3, Ab-based receptors with identical specificity but distinct affinities for HLA-A1/MAGE-A1, i.e., "TCR-like" specificity. These chimeric receptors comprised the FcepsilonRI-gamma signaling element. We analyzed whether linking the CD28 costimulation structure to it (gamma + CD28) could affect the levels of MHC-restricted cytolysis and/or cytokine production. Human scFv-G8(POS) T lymphocytes comprising the gamma + CD28 vs the gamma signaling element alone produced substantially more IL-2, TNF-alpha, and IFN-gamma in response to HLA-A1/MAGE-A1(POS) melanoma cells. Also a drastic increase in cytolytic capacity of scFv-G8(POS) T cells, equipped with gamma + CD28 vs the gamma-chain alone was observed.  相似文献   

10.
Presentation of Ag to T lymphocytes in the absence of the requisite costimulatory signals leads to an Ag-specific unresponsiveness termed anergy, whereas Ag presentation in conjunction with costimulation leads to clonal expansion. B7/CD28 signaling has been shown to provide this critical costimulatory signal and blockade of this pathway may inhibit in vitro and in vivo immune responses. Although T cells from CD28-deficient mice are lacking in a variety of responses, they nonetheless are capable of various primary and secondary responses without the induction of anergy expected in the absence of costimulation. This suggests that there may be alternative costimulatory pathways that can replace CD28 signaling under certain circumstances. In this paper, we show that ICAM-1becomes a dominant costimulatory molecule for CD28-deficient T cells. ICAM-1 costimulates anti-CD3-mediated T cell proliferation and IL-2 secretion in CD28-deficient murine T cells. Furthermore, splenocytes from ICAM-1-deficient mice could not activate CD28-deficient T cells and splenocytes lacking both ICAM and CD28 fail to proliferate in response to anti-CD3-induced T cell signals. This confirms that not only can ICAM-1 act as a CD28-independent costimulator, but it is the dominant, requisite costimulatory molecule for the activation of T cells in the absence of B7/CD28 costimulation.  相似文献   

11.
Ag-specific CD4 T cells transferred into unirradiated Ag-bearing recipients proliferate, but survival and accumulation of proliferating cells is not extensive and the donor cells do not acquire effector functions. We previously showed that a single costimulatory signal delivered by an agonist Ab to OX40 (CD134) promotes accumulation of proliferating cells and promotes differentiation to effector CD4 T cells capable of secreting IFN-gamma. In this study, we determined whether OX40 costimulation requires supporting costimulatory or differentiation signals to drive acquisition of effector T cell function. We report that OX40 engagement drives effector T cell differentiation in the absence of CD28 and CD40 signals. Two important regulators of Th1 differentiation, IL-12R and T-bet, also are not required for acquisition of effector function in CD4 T cells responsive to OX40 stimulation. Finally, we show that CD25-deficient CD4 T cells produce little IFN-gamma in the presence of OX40 costimulation compared with wild type, suggesting that IL-2R signaling is required for efficient OX40-mediated differentiation to IFN-gamma secretion.  相似文献   

12.
The role of OX40L on the activation of T cells was investigated using poxvirus vectors expressing OX40L alone or in combination with three other T-cell costimulatory molecules: B7-1, ICAM-1, and LFA-3. Poxvirus vector-infected cells were used to stimulate nai;ve or activated CD4(+) and CD8(+) T cells. These studies demonstrate that (a) OX40L plays a role in sustaining the long-term proliferation of CD8(+) T cells in addition to the known effect on CD4(+) T cells following activation, (b) OX40L enhances the production of Th1 cytokines (IL-2, IFN-gamma, and TNF-alpha) from both CD4(+) and CD8(+) while no change in IL-4 expression was observed, and (c) the anti-apoptotic effect of OX40L on T cells is likely the result of sustained expression of anti-apoptotic genes while genes involved in apoptosis are inhibited. In addition, these are the first studies to demonstrate that the combined use of a vector driving the expression of OX40L with three other costimulatory molecules (B7-1, ICAM-1, and LFA-3) both enhances initial activation and then further potentiates sustained activation of nai;ve and effector T cells.  相似文献   

13.
CD4(+) memory T cells continuously integrate signals transmitted through the TCR and costimulatory molecules, only responding when the intensity of such signals exceeds an intrinsic activation threshold. Recent data suggest that these activation thresholds can be regulated independently of TCR specificity, and that threshold tuning may constitute a major mechanism for controlling T cell effector activity. In this work we take advantage of the profound clonotypic hierarchies of the large human CD4(+) T cell response to CMV to study activation thresholds of fresh (unexpanded) memory T cells at the clonotypic level. We identified dominant responses to CMV matrix determinants mediated by single TCRB sequences within particular TCR-Vbeta families. The specific response characteristics of these single, Ag-specific, TCRB-defined clonotypes could be unequivocally determined in fresh PBMC preparations by cytokine flow cytometry with gating on the appropriate Vbeta family. These analyses revealed 1) optimal peptides capable of eliciting specific responses by themselves at doses as low as 2 pg/ml, with each log increase in dose eliciting ever-increasing frequencies of responding cells over a 4- to 5-log range; 2) significant augmentation of response frequencies at all submaximal peptide doses by CD28- and CD49d-mediated costimulation; 3) differential dose response and costimulatory characteristics for IFN-gamma and IL-2 responses; and 4) no association of activation requirements with the CD27-defined CD4(+) T cell memory differentiation pathway. Taken together these data confirm that triggering heterogeneity exists within individual CD4(+) memory T cell clonotypes in vivo and demonstrate that such single clonotypes can manifest qualitatively different functional responses depending on epitope dose and relative levels of costimulation.  相似文献   

14.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

15.
The function of the T cell surface protein CD99 was investigated in human CD4(+) peripheral T cells. Crosslinking of the CD99 molecule using anti-CD99 mAbs in the presence of anti-CD3 Ab resulted in a marked enhancement of proliferation. CD99 coligation also enhanced CD25 expression and early markers of T cell activation, CD69 and CD40L. Ligation of CD99 resulted in the pronounced tyrosine phosphorylation of an approximately 29-kDa protein suggesting that a specific CD99-induced signal transduction pathway may exist. Simultaneous costimulation with anti-CD99 and anti-CD28 Abs appeared to have additive effects on CD40L expression while CD99 ligation had no effect on CD2-mediated T cell induction of CD40L expression. These results demonstrate that CD99 signal transduction can deliver effective costimulatory signals to T cells.  相似文献   

16.
Establishment of host-protective memory T cells against tumors is the objective of an antitumor immunoprophylactic strategy such as reinforcing T cell costimulation via CD40-CD40L interaction. Previous CD40-targeted strategies assumed that T cell costimulation is an all-or-none phenomenon. It was unknown whether different levels of CD40L expression induce quantitatively and qualitatively different effector T cell responses. Using mice expressing different levels of CD40L, we demonstrated that the greater the T cell CD40L expression the less tumor growth occurred; the antitumor T cell response was host-protective. Lower levels of CD40L expression on T cells induced IL-10-mediated suppression of tumor-regressing effector CD8(+) T cells and higher productions of IL-4 and IL-10. Using mice expressing different levels of CD40 or by administering different doses of anti-CD40 Ab, similar observations were recorded implying that the induction of protumor or antitumor T cell responses was a function of the extent of CD40 cross-linking. IL-10 neutralization during priming with tumor Ags resulted in a stronger tumor-regressing effector T cell response. Using IL-10(-/-) DC for priming of mice expressing different levels of CD40L and subsequent transfer of the T cells from the primed mice to nu/nu mice, we demonstrated the protumor role of IL-10 in the induction of tumor-promoting T cells. Our results demonstrate that a dose-dependent cross-linking of a costimulatory molecule dictates the functional phenotype of the elicited effector T cell response. The T cell costimulation is a continuum of a function that induces not only graded T cell responses but also two counteracting responses at two extremes.  相似文献   

17.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

18.
The TNFR superfamily members 4-1BB (CD137) and OX40 (CD134) are costimulatory molecules that potently boost CD8 and CD4 T cell responses. Concomitant therapeutic administration of agonist anti-CD137 and -CD134 mAbs mediates rejection of established tumors and fosters powerful CD8 T cell responses. To reveal the mechanism, the role of CD137 expression by specific CD8 T cells was determined to be essential for optimal clonal expansion and accumulation of effector cells. Nonetheless, dual costimulation induced production of supereffector CD8 T cells when either the specific T cells or the host alone bore CD137. Perhaps surprisingly, the total absence of CD137 prevented anti-CD134 augmentation of supereffector differentiation demonstrating an unappreciated link between these related pathways. Ultimately, it was reasoned that these powerful dual costimulatory responses involved common gamma family members, and we show substantial increases of CD25 and IL-7Ralpha-chain expression by the specific CD8 T cells. To investigate this further, it was shown that IL-7 mediated T cell accumulation, but importantly, a gradual and preferential effect of survival was directed toward supereffector CD8 T cells. In fact, a clear enhancement of effector differentiation was demonstrated to be proportional to the increasing amount of IL-7Ralpha expression by the specific CD8 T cells. Therefore, dual costimulation through CD137 and CD134 drives production and survival of supereffector CD8 T cells through a distinct IL-7-dependent pathway.  相似文献   

19.
The strength of immune repression by regulatory T (Treg) cells is thought to depend on the efficiency of Treg cell activation. The stimuli and their individual strength required to activate resting human Treg cells, however, have so far not been elucidated in detail. We reveal here that induction of proliferation of human CD4(+)C25(+) Treg cells requires an extraordinary strong CD28 costimulatory signal in addition to TCR/CD3 engagement. CD28 costimulation, noteworthy, cannot be substituted by IL-2 to induce proliferation of Treg cells, which is in contrast to CD4(+)CD25(-) T cells. IL-2, in contrast, prevents spontaneous apoptosis of Treg cells, but does not initiate their amplification. IL-2 and CD28 costimulation clearly exhibit disparate effects on Treg cells which are in contrast to those on CD4(+)CD25(-) T cells. Moreover, the prerequisites for Treg cell proliferation differ strikingly from those for effector T cells, implying a balanced orchestration in initiating and limiting a T cell immune response. In addition, data are of relevance for the design of therapeutic strategies involving IL-2 administration and CD28 costimulation.  相似文献   

20.
4-1BB (CD137) is a costimulatory molecule expressed on activated T cells and interacts with 4-1BB ligand (4-1BBL) on APCs. To investigate the role of 4-1BB costimulation for the development of primary immune responses, 4-1BBL-deficient (4-1BBL-/-) mice were infected with lymphocytic choriomeningitis virus (LCMV). 4-1BBL-/- mice were able to generate CTL and eliminate acute LCMV infection with normal kinetics, but CD8 T cell expansion was 2- to 3-fold lower than in wild-type (+/+) mice. In the same mice, virus-specific CD4 Th and B cell responses were minimally affected, indicating that 4-1BB costimulation preferentially affects CD8 T cell responses. This result contrasts with our earlier work with CD40L-deficient (CD40L-/-) mice, in which the CD8 T cell response was unaffected and the CD4 T cell response was markedly impaired. When both 4-1BBL- and B7-dependent signals were absent, CD8 T cell expansion was further reduced, resulting in lower CTL activity and impairing their ability to clear LCMV. Altogether, these results indicate that T cells have distinct costimulatory requirements: optimal CD8 responses require 4-1BBL-dependent interactions, whereas CD4 responses are minimally affected by 4-1BB costimulation, but require CD40-CD40L and B7-dependent interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号