首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Compared to data from chimpanzees, observations on prey capture and meat eating by bonobos (Pan paniscus) are still rare, fragmentary and anecdotal. Here we present new and unpublished information from wild bonobos at Lui Kotale, Salonga National Park, Democratic Republic of Congo. Our observations confirm that solitary and terrestrial ungulates are the major prey. However, bonobos at Lui Kotale also consumed other mammalian prey, including other primates. Evidence from direct observations is complemented with information obtained by macroscopic analyses of fresh faeces. Results suggest that bonobos consume meat with frequencies similar to some chimpanzee populations. The data emphasize differences between the two Pan species in terms of prey species selection and prey capture.  相似文献   

2.
We list the animal species, mushrooms and honey, which are consumed by bonobos (Pan paniscus)in the Ikela region (Lilungu), Republic of Zaire, and compare these data with those obtained from other populations of bonobos: Lomako, Yalosidi, and Wamba. Lilungu bonobos consume earthworms more regularly than bonobos do at other localities. They also eat larvae, termites, and ants, but they probably do not consume invertebrates as regularly as chimpanzees do. Lilungu bonobos ate a squirrel and a chiropteran. We report our detailed observations of bonobo foraging, feeding and manipulating foods, including washing some items and complicated handling operations. We note intra- and intergroup differences in the consumption of specific foods and in the way they are handled by the females.  相似文献   

3.
We describe the cannibalization of an infant bonobo (circa 2.5 years old) at Lui Kotale, in the Democratic Republic of Congo. The infant died of unknown causes and was consumed by several community members including its mother and an older sibling one day after death. Certain features concerning the pattern of consumption fit in with previously observed episodes of cannibalism in Pan, whereas others, such as the mother's participation in consuming the body, are notable. The incident suggests that filial cannibalism among apes need not be the result of nutritional or social stress and does not support the idea that filial cannibalism is a behavioral aberration. Am. J. Primatol. 72:509–514, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the “continuity versus discontinuity” discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother–infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.  相似文献   

5.
Meat-eating behavior of wild bonobos (Pan paniscus) was witnessed on two occasions at Wamba, Republic of Zaire. Only flying squirrels were observed to be eaten by the bonobos. Several bonobos gathered around the possessor of the meat and showed interest in the meat on all occasions. Begging behavior was noted on one of the two occasions, but the possessor of the meat ignored it. No sharing of meat was seen on either occasion. The exclusive targets of hunting by bonobos are apparently small mammals, such as flying squirrels and infant duikers, since evidence of meat eating by wild bonobos, which have been studied for more than fifteen years, has been restricted to these mammals. The bonobos at Wamba may have a specialized “prey image”, as in the case of the chimpanzees (Pan troglodytes) of the Tai forest, and certain medium-sized or small mammals may not conform to this image.  相似文献   

6.
We list the animal species, mushrooms and honey, which are consumed by bonobos (Pan paniscus)in the Ikela region (Lilungu), Republic of Zaire, and compare these data with those obtained from other populations of bonobos: Lomako, Yalosidi, and Wamba. Lilungu bonobos consume earthworms more regularly than bonobos do at other localities. They also eat larvae, termites, and ants, but they probably do not consume invertebrates as regularly as chimpanzees do. Lilungu bonobos ate a squirrel and a chiropteran. We report our detailed observations of bonobo foraging, feeding and manipulating foods, including washing some items and complicated handling operations. We note intra- and intergroup differences in the consumption of specific foods and in the way they are handled by the females.  相似文献   

7.
In long–lived social mammals such as primates, individuals can benefit from social bonds with close kin, including their mothers. In the patrilocal chimpanzee (Pan troglodytes spp.) and bonobo (Pan paniscus), sexually mature males reside and reproduce in their natal groups and can retain post-dependency bonds with their mothers, while immatures of both sexes might also have their paternal grandmothers available. However, quantitative information on the proportion of males and immatures that co-reside with both types of these close female relatives is limited for both species. Combining genetic parentage determination and group composition data from five communities of wild chimpanzees and three communities of wild bonobos, we estimated the frequency of co-residence between (1) mature males and their mothers, and (2) immature males and females and their paternal grandmothers. We found that adult males resided twice as frequently with their mothers in bonobos than in chimpanzees, and that immature bonobos were three times more likely to possess a living paternal grandmother than were immature chimpanzees. Patterns of female and male survivorship from studbook records of captive individuals of both species suggest that mature bonobo females survive longer than their chimpanzee counterparts, possibly contributing to the differences observed in mother–son and grandmother–immature co-residency levels. Taking into account reports of bonobo mothers supporting their sons'' mating efforts and females sharing food with immatures other than their own offspring, our findings suggest that life history traits may facilitate maternal and grandmaternal support more in bonobos than in chimpanzees.  相似文献   

8.
Results from a 10 month study of adult male and female bonobos (Pan paniscus) in the Lomako Forest, Zaire, and those from a 7 month study of adult male and female chimpanzees in the Tai Forest, Ivory Coast (Pan troglodytes verus), were compared in order to determine whether there are species differences in locomotor behavior and substrate use and, if so, whether these differences support predictions made on the basis of interspecific morphological differences. Results indicate that bonobos are more arboreal than chimpanzees and that male bonobos are more suspensory than their chimpanzee counterpart. This would be predicted on the basis of male bonobo's longer and more narrow scapula. This particular finding is contrary to the prediction that the bonobo is a “scaled reduced version of a chimpanzee” with little or no positional behavior difference as had been suggested. This study provides the behavioral data necessary to untangle contradictory interpretations of the morphological differences between chimpanzees and bonobos, and raises a previously discussed (Fleagle: Size and Scaling in Primate Biology, pp. 1–19, 1985) but frequently overlooked point–that isometry in allometric studies does not necessarily equate with behavioral equivalence. Several researchers have demonstrated that bonobos and chimpanzees follow the same scaling trends for many features, and are in some sense functionally equivalent, since they manage to feed and reproduce. However, as reflected in their morphologies, they do so through different types and frequencies of locomotor behaviors. © 1993 Wiley-Liss, Inc.  相似文献   

9.
To understand constraints on the evolution of cooperation, we compared the ability of bonobos and chimpanzees to cooperatively solve a food-retrieval problem. We addressed two hypotheses. The "emotional-reactivity hypothesis" predicts that bonobos will cooperate more successfully because tolerance levels are higher in bonobos. This prediction is inspired by studies of domesticated animals; such studies suggest that selection on emotional reactivity can influence the ability to solve social problems [1, 2]. In contrast, the "hunting hypothesis" predicts that chimpanzees will cooperate more successfully because only chimpanzees have been reported to cooperatively hunt in the wild [3-5]. We indexed emotional reactivity by measuring social tolerance while the animals were cofeeding and found that bonobos were more tolerant of cofeeding than chimpanzees. In addition, during cofeeding tests only bonobos exhibited socio-sexual behavior, and they played more. When presented with a task of retrieving food that was difficult to monopolize, bonobos and chimpanzees were equally cooperative. However, when the food reward was highly monopolizable, bonobos were more successful than chimpanzees at cooperating to retrieve it. These results support the emotional-reactivity hypothesis. Selection on temperament may in part explain the variance in cooperative ability across species, including hominoids.  相似文献   

10.
11.
The endangered great ape, Pan paniscus (bonobo) has the smallest range of the African apes. Virtually nothing is known about the genetic diversity or genetic structure of this species, while substantial amounts of polymorphism have been reported for the bonobo’s widespread congener, the chimpanzee (P. troglodytes). Given its restricted range, what is the extent of genetic variation in the bonobo relative to the chimpanzee, and is the bonobo genetically depauperate? To investigate patterns of genetic polymorphism, bonobos of wild origin were genotyped for 28 microsatellite loci. The mean number of alleles per locus (5.2) and the mean observed heterozygosity (0.52) in bonobos were similar to variation observed in a wild chimpanzee community (P. t. schweinfurthii). The rarer bonobo is not genetically depauperate and may have genetic diversity comparable to the eastern chimpanzee subspecies. Bonobos have approximately 55% of the allelic diversity and 66% of the observed heterozygosity exhibited by all three chimpanzee subspecies sampled across equatorial Africa. Resampling techniques were used to quantify the effects of sample size differences and number and choice of loci between bonobos and chimpanzees. The examination of these variables underscores their importance in accurately interpreting interspecific comparisons of diversity estimates.  相似文献   

12.
Interspecific relations between wild bonobos (Pan paniscus) and two species of guenons (Cercopithecus wolfi andC. ascanius) were studied at Wamba in the Central Zaire Basin from September 1989 to January 1990. Data on the guenons were collected while following parties of bonobos or when searching for them. The guenons were observed directly 59 times during the study period. In about half of these observations, the guenons were found within 20 m from the bonobo parties. The encounters between the bonobos and the guenons sometimes lasted over an hour. The guenons mainly initiated the encounters by approaching the bonobos. During the encounters, no aggressive interactions were observed between the bonobos and the guenons. Evidence of hunting by wild bonobos has been restricted to small mammals, and there has been no evidence of hunting of primates by wild bonobos. These findings and the results of the present study strongly suggest that wild bonobos do not hunt sympatric primates.  相似文献   

13.
Habitat loss and hunting threaten bonobos (Pan paniscus), Endangered (IUCN) great apes endemic to lowland rainforests of the Democratic Republic of Congo. Conservation planning requires a current, data-driven, rangewide map of probable bonobo distribution and an understanding of key attributes of areas used by bonobos. We present a rangewide suitability model for bonobos based on a maximum entropy algorithm in which data associated with locations of bonobo nests helped predict suitable conditions across the species’ entire range. We systematically evaluated available biotic and abiotic factors, including a bonobo-specific forest fragmentation layer (forest edge density), and produced a final model revealing the importance of simple threat-based factors in a data poor environment. We confronted the issue of survey bias in presence-only models and devised a novel evaluation approach applicable to other taxa by comparing models built with data from geographically distinct sub-regions that had higher survey effort. The model’s classification accuracy was high (AUC = 0.82). Distance from agriculture and forest edge density best predicted bonobo occurrence with bonobo nests more likely to occur farther from agriculture and in areas of lower edge density. These results suggest that bonobos either avoid areas of higher human activity, fragmented forests, or both, and that humans reduce the effective habitat of bonobos. The model results contribute to an increased understanding of threats to bonobo populations, as well as help identify priority areas for future surveys and determine core bonobo protection areas.  相似文献   

14.
Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) diverged into distinct species approximately 1.7 million years ago when the ancestors of modern-day bonobo populations were separated by the Congo River. This geographic boundary separates the two species today and the associated ecological factors, including resource distribution and feeding competition, have likely shaped the divergent social behavior of both species. The most striking behavioral differences pertain to between group interactions in which chimpanzees behave aggressively towards unfamiliar conspecifics, while bonobos display remarkable tolerance. Several hypotheses attempt to explain how different patterns of social behavior have come to exist in the two species, some with specific genetic predictions, likening the evolution of bonobos to a process of domestication. Here, we utilize 73 ape genomes and apply linkage haplotype homozygosity and structure informed allele frequency differentiation methods to identify positively selected regions in bonobos since their split from a common pan ancestor to better understand the environment and processes that resulted in the behavioral differences observed today. We find novel evidence of selection in genetic regions that aid in starch digestion (AMY2) along with support for two genetic predictions related to self-domestication processes hypothesized to have occurred in the bonobo. We also find evidence for selection on neuroendocrine pathways associated with social behavior including the oxytocin, serotonin, and gonadotropin releasing hormone pathways.  相似文献   

15.
We investigated intra- and interspecific differences in life history and reproductive parameters in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We compare the parameters of wild and captive females in order to shed light on the influence of habitat or specific differences or both on reproduction. We present new and additional information on reproductive parameters from captive bonobos and chimpanzees. Captive chimpanzees birth more live offspring and have a shorter interbirth interval, but experience higher infant mortality than captive bonobos. Although captive bonobo females tend to start reproduction at a younger age than chimpanzees, this is effectively only so for wild-born females of both species. Ultimately both species reach the same rate of production of offspring surviving to 5 yr. These results contrast with data from the wild. Wild bonobos tend to have higher reproductive success, a higher fertility rate and a shorter interbirth interval than wild chimpanzees. Reproduction is similar for wild and captive bonobos, which suggests that they are producing at their maximum under both conditions. Overall captive chimpanzees perform better than their wild conspecifics, probably because of lower feeding competition. Infant survival is the only specific difference not affected by captivity. Bonobo infants survive better, which suggests that chimpanzee infants are more at risk. We argue that the interspecific variation in reproductive parameters in captivity is related to the different influence of captivity on reproduction and different pressures of external sources of infant and juvenile mortality.  相似文献   

16.
We studied the impact of hunting on monkey species in the Taï National Park and adjacent forests in Côte d'Ivoire. The average wild meat consumption per capita per year was assessed from market surveys and interviews. We determined that the amount of primate wild meat being extracted in the Taï National Park and surrounding forests was 249 t in 1999. Hunting pressure was the highest on the larger primate species such as red colobus, Procolobus badius, black and white colobus, Colobus polykomos, and the sooty mangabey, Cercocebus torquatus atys. Estimates of population densities were based on line transect surveys. The maximum annual production of each species was calculated using the Robinson and Redford model (1991) and assuming unhunted conditions. Comparing current harvest levels with the maximum sustainable yield suggests that harvest of red colobus monkeys (Procolobus badius) is sustainable, whereas current off‐take of the black and white colobus (Colobus polykomos), the sooty mangabey (Cercocebus atys), diana monkeys (Cercopithecus diana), and Campbell's monkeys (Cercopithecus campbelli) exceeds sustainability by up to three times.  相似文献   

17.
Four types of specific objects: wooden spoons, metal bowls, plastic boxes, and cotton towels were introduced in a similar setting to two captive groups of different species in the genusPan, the bonobo and the chimpanzee. In total, 582 unique manipulation forms were distinguished by a set of variables: types of objects, motor patterns, body-parts used, the number of objects manipulated, and types of orienting manipulation. In sum, chimpanzees and bonobos were not so different in the variety and the complexity of object manipulation forms. However, comparison of the two species revealed significant differences as follows: (1) chimpanzees preferred to use only one hand during manipulation of both single- and multiple-objects, whereas in the case of multiple-objects bonobos used both hands significantly more often; (2) chimpanzees performed more orienting manipulations in single-object manipulations than did bonobos, whereas the reverse was the case in multiple-object manipulations; and (3) chimpanzees' object manipulations were overall more substrate-oriented than were bonobos'. The factors producing these differences are discussed in relation to positional behaviors and habitual tool use in the two species.  相似文献   

18.
Primates along with many other animal taxa are forced to cope with large shifts in basic ecological conditions because of rapid anthropogenically induced changes of their habitats. One of the coping strategies for primates is to adjust their diet to these changes, and several studies have demonstrated the importance of fallback resources for this. Bonobos, like chimpanzees, might be particularly vulnerable to habitat fragmentation because of their high dependence on fruit availability. Little is known, however, about bonobo feeding ecology in fragmented habitats and their use of fallback resources. In this study, we investigate diet seasonal variation and the exploitation of preferred and fallback foods in a bonobo population living in forest‐savannah mosaics. Results show that bonobos have adapted to this fragmented habitat by feeding on only a few fruit species, including an important number of non‐tree species (liana, herb and savannah shrub), in comparison to populations living in dense forests. These non‐tree plants have been defined as fallback and non‐preferred foods, which are most probably consumed to maintain high frugivory. Interestingly, we identified that preferred foods are all typical of mature forests while fallback resources are mainly found in forest edges or disturbed areas. This finding indicates that bonobos prefer to use mature forests when feeding, as they do for nesting, but extend their range use to forest areas in close proximity to humans when the availability of preferred fruits is low. Finally, we show that bonobo diet relies heavily on two abundant fallback fruits: Musanga cecropioides and Marantochloa leucantha. Other studies have demonstrated that the selection of abundant fallback resources enables primates to subsist at high densities and to maintain cohesive groups, as observed at this study site. Our findings suggest that bonobos living in forest‐savannah mosaics can be considered as staple fallback food consumers. Am. J. Primatol. 77:948–962, 2015. © 2015 Wiley Periodicals, Inc.
  相似文献   

19.
Bonobos have been observed to use socio-sexual behavior at higher frequency than chimpanzees. Little is known about the developmental influences that shape this behavior in bonobos. We compared the social sexual behavior of wild-born bonobo (n = 8) and chimpanzee (n = 16) infants in an experimental feeding test. Subjects of both species were orphans of the bushmeat trade living at sanctuaries in peer groups. During the experiment, chimpanzee infants never had socio-sexual interactions with one another. In contrast, bonobo infants had socio-sexual interactions significantly more than the chimpanzee infants and more often when food was presented. During these socio-sexual interactions, bonobo infants did not show a preference for heterosexual partners or genital–genital positioning that is reproductive in adults (e.g. a dorso–ventral posture). These findings suggest that the socio-sexual behavior previously observed in various captive and wild bonobos is species-typical. Wild-born bonobos originating from a large geographical range develop this behavior long before puberty and without the need for adults initiating such behavior or acting as models for observational learning. Meanwhile, chimpanzee infants of the same age with similar rearing history show no signs of the same socio-sexual behavior. Results are interpreted regarding hypotheses for the evolution of bonobo psychology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号