首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis is a major problem in animal cell cultures during production of biopharmaceuticals, such as recombinant proteins or viral vectors. A 293 cell line constitutively expressing vMIA (viral mitochondria-localized inhibitor of apoptosis) was constructed and examined on production of a model recombinant protein, green fluorescent protein (GFP) in the adenovirus-293 expression system, and on production of a model infectious adenoviral vector. vMIA-293 cells were more resistant than the parental 293 cells to apoptosis induced by either oxidative stress, or by adenovirus infection. The yield of GFP produced in vMIA-293 cell cultures was consistently higher (140%) compared to that in the parental cells. vMIA reduced production of adenovirus infectious particles, which was not due to a decline of adenovirus replication, since adenoviral DNA replication rate in vMIA-293 cells was higher than that in the parental cells.In conclusion, introduction of the vMIA gene into the 293 cell line is a promising strategy to improve recombinant protein production in the adenovirus-293 expression system.  相似文献   

2.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   

3.
Skeletal muscle cells are exposed to mechanical stretch during embryogenesis. Increased stretch may contribute to cell death, and the molecular regulation by stretch remains incompletely understood. The aim of this study was to investigate the effects of cyclic stretch on cell death and apoptosis in myoblast using a Flexercell Strain Unit. Apoptosis was studied by annexin V binding and PI staining, DNA size analysis, electron microphotograph, and caspase assays. Fas/FasL expression was determined by Western blot. When myoblasts were cultured on a flexible membrane and subjected to cyclic strain stress, apoptosis was observed in a time‐dependent manner. We also determined that stretch induced cleavage of caspase‐3 and increased caspase‐3 activity. Caspase‐3 inhibition reduced stretch‐induced apoptosis. Protein levels of Fas and FasL remained unchanged. Our findings implicated that stretch‐induced cell death is an apoptotic event, and that the activation of caspase cascades is required in stretch‐induced cell apoptosis. Furthermore, we had provided evidence that caspase‐3 mediated cyclic stretch‐induced myoblast apoptosis. Mechanical forces induced activation of caspase‐3 via signaling pathways independent of Fas/FasL system. J. Cell. Biochem. 107: 834–844, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
There is an increased interest from the vaccine industry to use mammalian cell cultures for influenza vaccine manufacturing. Therefore, it became important to study the influenza infection mechanism, the viral–host interaction, and the replication kinetics from a bioprocessing stand point to maximize the influenza viral production yield in cell culture. In the present work, influenza replication kinetics was studied in HEK293 cells. Two infection conditions were evaluated, a low (0.01) and a high multiplicity of infection (1.0). Critical time points of the viral production cycle (infection, protein synthesis, viral assembly and budding, viral release, and host‐cell death) were identified in small‐scale cell cultures. Additionally, cell growth, viability, and viral titers were monitored in the viral production process. The infection state of the cultivated cell population was assessed by influenza immunolabeling throughout the culture period. Influenza virus production kinetics were also on‐line monitored by dielectric spectroscopy and successfully correlated to real‐time capacitance measures. Overall, this work provided insights into the mechanisms associated with the infection of human HEK293 cell line by the influenza virus and demonstrated, once again, the usefulness of multifrequency scanning permittivity for in‐line monitoring and supervision of cell‐based viral production processes. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

5.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

6.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   

7.
8.
Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell‐specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell‐specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 × 106 cells/mL. In comparison, only 50% of reduction in the cell‐specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 × 106 cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 × 106 cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
BACKGROUND : Arsenic is a ubiquitous element that is a potential carcinogen and teratogen and can cause adverse developmental outcomes. Arsenic exerts its toxic effects through the generation of reactive oxygen species (ROS) that include hydrogen peroxide (H2O2), superoxide‐derived hydroxyl ion, and peroxyl radicals. However, the molecular mechanisms by which arsenic induces cytotoxicity in murine embryonic maxillary mesenchymal (MEMM) cells are undefined. METHODS : MEMM cells in culture were treated with different concentrations of pentavalent sodium arsenate [As (V)] for 24 or 48 hr and various end points measured. RESULTS : Treatment of MEMM cells with the pentavalent form of inorganic arsenic resulted in caspase‐mediated apoptosis, accompanied by generation of ROS and disruption of mitochondrial membrane potential. Treatment with caspase inhibitors markedly blocked apoptosis. In addition, the free radical scavenger N‐acetylcysteine dramatically attenuated arsenic‐mediated ROS production and apoptosis, and exposure to arsenate increased Bax and decreased Bcl protein levels in MEMM cells. CONCLUSIONS : Taken together, these findings suggest that in MEMM cells arsenate‐mediated oxidative injury acts as an early and upstream initiator of the cell death cascade, triggering cytotoxicity, mitochondrial dysfunction, altered Bcl/Bax protein ratios, and activation of caspase‐9. Birth Defects Research (Part A), 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Hyperosmotic stress has been widely explored as a means of improving specific antibody productivity in mammalian cell cultures. In contrast, a decrease in cell-specific productivity of adenovirus production has been reported in several studies in which virus production in HEK 293 cell cultures was conducted under hyperosmotic conditions. However, production of viral vectors and, in particular, adenoviral vectors is the result of two consecutive phases: the growth phase and the virus production phase. In this study, the singular and combined effects of osmolality on the phases of cell growth and virus production were evaluated in culture media with osmolalities ranging from 250 to 410 mOsm. A two-factor, five-level full factorial design was used to investigate the effect of osmotic stress on cell physiology, as determined through the characterization of cell growth, cell metabolism, cell viability, cell cycle, cell RNA and total protein content, and total virus yield/cell-specific virus productivity. Overall, the results show that the growth of cells under hyperosmotic conditions induced favorable physiological states for viral production, and the specific virus productivity was improved by more than 11-fold when the medium's osmolality was increased from 250 to 410 mOsm during the cell growth phase. Both hypo- and hyperosmotic stresses in the virus production phase reduced virus productivity by as much as a factor of six. Optimal virus productivity was achieved by growing cells in media with an osmolality of 370 mOsm or greater, followed by a virus production phase at an osmolality of 290 mOsm. Compared to standard culture and production conditions in isotonic media, the shift from high to low osmolality between the two phases resulted in a two- to three-fold increase in virus yields. This hyperosmotic pressure effect on virus productivity was reproduced in five different commercial serum-free media.  相似文献   

12.
Based on our recent findings that 25  µ M cadmium triggers oxidative stress–mediated caspase‐dependent apoptosis in murine thymocytes, this study is designed to explore whether Cd also induces caspase‐independent apoptosis. We found that pretreatment with caspase inhibitors fails to prevent Cd‐induced apoptosis completely, suggesting the possibility of an additional pathway. Western blot and flow cytometry techniques indicated marked expression of apoptosis‐inducing factor and endonuclease G in nuclear fraction, signifying their translocation from mitochondria to nucleus. Intracellular Ca2+ and reactive oxygen species (ROS) levels significantly raised by Cd were restored by ruthenium red, which had no influence on mitochondrial membrane depolarization and caspase activity and apoptosis. Using cyclosporin A, ROS formation and mitochondrial membrane depolarization were completely abolished, whereas apoptosis was partly attenuated. These results clearly demonstrate more than one apoptotic pathway in thymocytes and support the role of mitochondrial permeability transition pore in the regulation of caspase‐independent cell death triggered by Cd. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:193‐203, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21468  相似文献   

13.
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.  相似文献   

14.
The proteins of 14‐3‐3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14‐3‐3 isoforms (β, γ, ε, τ, and ζ) during the apoptosis of JURL‐MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C‐terminal amino acids. The observed 14‐3‐3 modifications were partially blocked by caspase‐3 inhibition. In addition to caspases, a non‐caspase protease is likely to contribute to 14‐3‐3's cleavage in an isoform‐specific manner. While 14‐3‐3 γ seems to be cleaved mainly by caspase‐3, the alternative mechanism is essentially involved in the case of 14‐3‐3 τ, and a combined effect was observed for the isoforms ε, β, and ζ. We suggest that the processing of 14‐3‐3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. J. Cell. Biochem. 106: 673–681, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The Clusterin (CLU) gene produces different forms of protein products, which vary in their biological properties and distribution within the cell. Both the extra‐ and intracellular CLU forms regulate cell proliferation and apoptosis. Dis‐regulation of CLU expression occurs in many cancer types, including prostate cancer. The role that CLU plays in tumorigenesis is still unclear. We found that CLU over‐expression inhibited cell proliferation and induced apoptosis in prostate cancer cells. Here we show that depletion of CLU affects the growth of PC‐3 prostate cancer cells. Following siRNA targeting all CLU mRNA variants, all protein products quickly disappeared, inducing cell cycle progression and higher expression of specific proliferation markers (i.e., H3 mRNA, PCNA, and cyclins A, B1, and D) as detected by RT‐qPCR and Western blot. Quite surprisingly, we also found that the turnover of CLU protein is very rapid and tightly regulated by ubiquitin–proteasome mediated degradation. Inhibition of protein synthesis by cycloheximide showed that CLU half‐life is less than 2 h. CLU protein products were found poly‐ubiquitinated by co‐immuniprecipitation. Proteasome inhibition by MG132 caused stabilization and accumulation of all CLU protein products, including the nuclear form of CLU (nCLU), and committing cells to caspase‐dependent death. In conclusion, proteasome inhibition may induce prostate cancer cell death through accumulation of nCLU, a potential tumor suppressor factor. J. Cell. Physiol. 219: 314–323, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Epstein Barr Virus (EBV) replicates in oral epithelial cells and gains entry to B-lymphocytes. In B-lymphocytes, EBV expresses a restricted subset of genes, the Latency III program, which converts B-lymphocytes to proliferating lymphoblasts. Latent Membrane Protein 1 (LMP1) and the other Latency III associated proteins are also expressed during virus replication. LMP1 is essential for virus replication and egress from Akata Burkitt Lymphoma cells, but a role in epithelial cell replication has not been established. Therefore, we have investigated whether LMP1 enhances EBV replication and egress from HEK293 cells, a model epithelial cell line used for EBV recombinant molecular genetics. We compared wild type (wt) and LMP1-deleted (LMP1Δ) EBV bacterial artificial chromosome (BAC) based virus replication and egress from HEK293. Following EBV immediate early Zta protein induction of EBV replication in HEK293 cells, similar levels of EBV proteins were expressed in wt- and LMP1Δ-infected HEK293 cells. LMP1 deletion did not impair EBV replication associated DNA replication, DNA encapsidation, or mature virus release. Indeed, virus from LMP1Δ-infected HEK293 cells was as infectious as EBV from wt EBV infected HEK cells. Trans-complementation with LMP1 reduced Rta expression and subsequent virus production. These data indicate that LMP1 is not required for EBV replication and egress from HEK293 cells.  相似文献   

17.
We examined the influence of cellular prion protein (PrPc) in the control of cell death in stably transfected HEK293 cell line and in the PrPc-inducible Rov9 cells. PrPc expression in stably transfected HEK293 human cells did not modify basal apoptotic tonus but drastically potentiated staurosporine-stimulated cellular toxicity and DNA fragmentation as well as caspase 3-like activity and immunoreactivity. An identical staurosporine-induced caspase 3 activation was observed after doxycycline in the PrPc-inducible Rov9 cell line. Interestingly, proteasome inhibitors increase PrPc-like immunoreactivity and unmasked a basal caspase 3 activation. Conversely, we show that anti-PrPc antibodies sequestrate PrPc at the cell surface and drastically lower PrPc-dependent caspase activation. We suggest that intracellular PrPc could sensitize human cells to pro-apoptotic phenotype and that blockade of PrPc internalization could be a track to prevent intracellular toxicity associated with PrPc overexpression.  相似文献   

18.
Cardiac cell death is one of the major events implicated in doxorubicin‐induced cardiotoxicity, which leads to heart failure. We recently reported that Yes‐associated protein 1 (YAP1) regulates cell survival and apoptosis. However, it is unclear whether YAP1 regulates doxorubicin‐induced cell death in cardiomyocytes. We investigated whether YAP1 is involved in doxorubicin‐induced cell death using H9c2 cardiac cells and mouse heart. In an in vivo study, YAP1 protein expression was significantly decreased in hearts of doxorubicin‐treated mice with increased caspase‐3 activation. Doxorubicin also caused cell death by increasing caspase‐3 activation in H9c2 cells. Doxorubicin reduced YAP1 protein expression and messenger RNA expression accompanied by increased phosphorylation of YAP1 at Ser127. Doxorubicin further increased cell death with increased caspase‐3/7 activation in the absence of YAP1 when compared with doxorubicin or siYAP1 treatment alone. Overexpression of constitutively active YAP1 (YAP1–5SA) using an adenovirus gene transfer technique significantly reversed doxorubicin‐induced cell death by decreasing caspase‐3/7 activation in H9c2 cells. Akt, a potential prosurvival factor, decreased in doxorubicin‐ and YAP1 short interfering RNA (siRNA)‐treated cells. Doxorubicin further significantly decreased Akt protein expression when YAP1 was silenced. Overexpression of YAP1 canceled decreased Akt protein expression induced by doxorubicin treatment in H9c2 cells. In conclusion, these results suggest that doxorubicin‐induced cardiac cell death is mediated in part by down‐regulation of YAP1 and YAP1‐targeted gene, Akt. Modulating YAP1 and its related Hippo pathway on local cardiomyocytes may be a promising therapeutic approach for doxorubicin‐induced cardiotoxicity.  相似文献   

19.
Upon nutrient deprivation during culture, recombinant Chinese hamster ovary (rCHO) cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. To investigate the effect of Bcl‐xL overexpression on apoptosis and autophagy in rCHO cells, an erythropoietin (EPO)‐producing rCHO cell line with regulated Bcl‐xL overexpression (EPO‐off‐Bcl‐xL) was established using the Tet‐off system. The expression level of Bcl‐xL in EPO‐off‐Bcl‐xL cells was tightly regulated by doxycycline in a dose‐dependent manner. Bcl‐xL overexpression enhanced cell viability and extended culture longevity in batch culture. Upon nutrient depletion in the later stage of batch culture, Bcl‐xL overexpression suppressed apoptosis by inhibiting the activation of caspase‐3 and ‐7. Simultaneously, Bcl‐xL overexpression also delayed autophagy, characterized by LC3‐II accumulation. Immunoprecipitation analysis with a Flag‐tagged Bcl‐xL revealed that Bcl‐xL interacts with Bax and Bak, essential mediators of caspase‐dependent apoptosis, as well as with Beclin‐1, an essential mediator of autophagy, and may inhibit their pro‐cell death function. Taken together, it was found that Bcl‐xL overexpression inhibits both apoptosis and autophagy in rCHO cell culture. Biotechnol. Bioeng. 2009;103: 757–766. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
We have developed an efficient, reproducible, and scaleable cell culture process for a recombinant adenoviral vector expressing therapeutic transgenes for clinical trials. HEK 293 cells – which support the propagation of E1 deficient adenovirus – were first adapted to serum free media and suspension growth. Subsequent studies focused on the infection, virus production and harvest from suspension culture bioreactors. Future studies are planned to address the kinetics of adenovirus production in HEK 293 as well as in other cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号