首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
A robotic high‐throughput displacer screen was developed and employed to identify chemically selective displacers for several protein pairs in cation exchange chromatography. This automated screen enabled the evaluation of a wide range of experimental conditions in a relatively short period of time. Displacers were evaluated at multiple concentrations for these protein pairs, and DC‐50 plots were constructed. Selectivity pathway plots were also constructed and different regimes were established for selective and exclusive separations. Importantly, selective displacement was found to be conserved for multiple protein pairs, demonstrating the technique to be applicable for a range of protein systems. Although chemically selective displacers were able to separate protein pairs that had similar retention in ion exchange but different surface hydrophobicities, they were not able to distinguish protein pairs with similar surface hydrophobicities. This corroborates that displacer‐protein hydrophobic interactions play an important role for this class of selective displacers. Important functional group moieties were established and efficient displacers were identified. These results demonstrate that the design of chemically selective displacers requires a delicate balance between the abilities to displace proteins from the resin and to bind to a selected protein. The use of robotic screening of displacers will enable the extension of chemically selective displacement chromatography beyond hydrophobic displacer‐protein interactions to other secondary interactions and more selective displacement systems. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α‐chymotrypsin with water‐acetone (moderate‐strength H‐bond acceptor) and water‐DMSO (strong H‐bond acceptor) mixtures. There are three concentration regimes for the dried α‐chymotrypsin. α‐Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α‐chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water‐poor acetone is ~80%, compared with that observed after incubation in pure water. This effect is very small for the water‐poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α‐chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α‐chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α‐chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein–water–organic solvent systems.  相似文献   

3.
In contrast to high molecular weight polyelectrolyte displacers, the efficacy of low molecular weight displacers are dependent on both mobile phase salt and displacer concentration. This sensitivity to the operating conditions opens up the possibility of carrying out selective displacement where the product(s) of interest can be selectively displaced while the low affinity impurities can be desorbed in the induced salt gradient ahead of the displacement train, and the high affinity impurities either retained or desorbed in the displacer zone. This type of displacement combines the operational advantages of step gradient and the high resolution inherent in a true displacement process, in a single operation. Theoretical expressions are presented for establishing selective displacement operating conditions (initial salt concentration, displacer concentration) based on the Steric Mass Action parameters of the displacer and the linear Steric Mass Action parameters of the feed proteins. Experimental results are presented to elucidate the concept of selective displacement in both cation and anion exchange systems. A mixture of alpha-lactalbumin and beta-lactoglobulin A and B has been used for anion-exchange systems; a four-protein mixture consisting of ribonuclease B, bovine and horse heart cytochrome c, and lysozyme has been employed in cation exchange systems. This article also demonstrates that on-line monitoring can be readily employed for the selective displacement process, thus facilitating the scale-up and control of the process. This work sets the stage for the development of robust large scale high resolution separations using selective displacement chromatography. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 119-129, 1997.  相似文献   

4.
Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process.  相似文献   

5.
Although the ability to carry out simultaneous concentration and purification in a single displacement step has significant advantages for downstream processing of pharmaceuticals, a major impediment to the implementation of displacement chromatography has been the lack of suitable displacer compounds. An important recent advance in the state of the art of displacement chromatography has been the discovery that low-molecular-weight dendritic polymers can be successfully employed as displacers for protein purification in ion-exchange systems. In this article, protected amino acid esters (based on arginine and lysine) are shown to be useful displacers for protein purification in cation-exchange systems. A dynamic affinity plot is employed to evaluate the affinity of these low-molecular-weight compounds under dis-placement conditions. In contrast to large polyelectroyte displacers, the efficacy of these low-molecular-weight displacers was shown to be dependent on both the initial carrier salt concentration and the displacer concentration. In addition to the funcamental interest generated by low-molecular-weight displacers, it is likely that these displacers will have significant operatioal advantages as compared with large polyelectrolyte displacers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
A fluorescent reporter, 8‐anilino‐1‐naphthalene sulfonic acid (ANS), can serve as a reference molecule for conformational transition of a protein because its aromatic carbons have strong affinity with hydrophobic cores of partially unfolded molten globules. Using a typical calcium‐binding protein, bovine α‐lactalbumin (BLA), as a model protein, we compared the ANS binding thermodynamics to the decalcified (10 mM EDTA treated) apo‐BLA at two representative temperatures: 20 and 40 °C. This is because the authentic molten globule is known to form more heavily at an elevated temperature such as 40 °C. Isothermal titration calorimetry experiments revealed that the BLA–ANS interactions at both temperatures were entropy‐driven, and the dissociation constants were similar on the order of 10?4 M, but there was a dramatic changeover in the binding thermodynamics from endothermic at 20 °C to exothermic at 40 °C. We believe that the higher subpopulation of authentic molten globules at 40 °C than 20 °C would be responsible for the results, which also indicate that weak binding is sufficient to alter the ANS binding mechanisms. We expect that the thermodynamic properties obtained from this study would serve as a useful reference for investigating the binding of other hydrophobic ligands such as oleic acid to apo‐BLA, because oleic acid is known to have tumor‐selective cytotoxicity when complexed with partially unfolded α‐lactalbumin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
H uman α ‐lactalbumin m ade le thal to t umor cells (HAMLET) and its analogs are partially unfolded protein‐oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge‐specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively‐charged lysine residues to negatively‐charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild‐type α‐lactalbumin‐oleic acid complex. With the addition of OA, the wild‐type and guanidinated α‐lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α‐lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively‐charged basic groups on α‐lactalbumin and the negatively‐charged carboxylate groups on OA molecules play an essential role in the binding of OA to α‐lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Although the N‐terminal region in human apolipoprotein (apo) A‐I is thought to stabilize the lipid‐free structure of the protein, its role in lipid binding is unknown. Using synthetic fragment peptides, we examined the lipid‐binding properties of the first 43 residues (1–43) of apoA‐I in comparison with residues 44–65 and 220–241, which have strong lipid affinity in the molecule. Circular dichroism measurements demonstrated that peptides corresponding to each segment have potential propensity to form α‐helical structure in trifluoroethanol. Spectroscopic and thermodynamic measurements revealed that apoA‐I (1–43) peptide has the strong ability to bind to lipid vesicles and to form α‐helical structure comparable to apoA‐I (220–241) peptide. Substitution of Tyr‐18 located at the center of the most hydrophobic region in residues 1–43 with a helix‐breaking proline resulted in the impaired lipid binding, indicating that the α‐helical structure in this region is required to trigger the lipid binding. In contrast, apoA‐I (44–65) peptide exhibited a lower propensity to form α‐helical structure upon binding to lipid, and apoA‐I (44–65/S55P) peptide exhibited diminished, but not completely impaired, lipid binding, suggesting that the central region of residues 44–65 is not pivotally involved in the formation of the α‐helical structure and lipid binding. These results indicate that the most N‐terminal region of apoA‐I molecule, residues 1–43, contributes to the lipid interaction of apoA‐I through the hydrophobic helical residues. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Proteins (bovine serum albumin (BSA), α‐chymotrypsin, cytochrome c, and lysozyme) were extracted from 0.5 to 2.0 g L?1 aqueous solution by adding an equal volume of isooctane solution that contained a surfactant mixture (Aerosol‐OT, or AOT, and a 1,3‐dioxolane (or cyclic ketal) alkyl ethoxylate, CK‐2,13‐E5.6), producing a three‐phase (Winsor‐III) microemulsion with a middle, bicontinuous microemulsion, phase highly concentrated in protein (5–13 g L?1) and small in volume (12–20% of entire volume). Greater than 90% forward extraction was achieved within a few minutes. Robust W‐III microemulsion systems were formulated at 40°C, or at 25°C by including a surfactant with shorter ethoxylate length, CK‐2,13‐E3, or 1.5% NaCl (aq). Successful forward extraction correlated with high partitioning of AOT in the middle phase (>95%). The driving force for forward extraction was mainly electrostatic attractions imposed by the anionic surfactant AOT, with the exception of BSA at high ionic strength, which interacted via hydrophobic interactions. Through use of aqueous stripping solutions of high ionic strength (5.0 wt %) and/or pH 12.0 (to negate the electrostatic attractive driving force), cytochrome c and α‐chymotrypsin were back extracted from the middle phase at >75% by mass, with the specific activity of recovered α‐chymotrypsin being >90% of its original value. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

11.
Abha Jain  Dinakar M. Salunke 《Proteins》2017,85(10):1820-1830
Lipids are considered to protect protein allergens from proteolysis and are generally seen to exist in a bound form. One of the well‐known plant protein families with bound lipids is non‐specific lipid transfer proteins (nsLTPs). Structure‐function relationships in the case of the members of non‐specific lipid transfer protein family are not clearly understood. As part of exploring the seed proteome, we have analyzed the proteome of a member of Solanaceae family, Solanum melongena (eggplant) and a non‐specific lipid transfer protein from S. melongena, SM80.2 was purified, crystallized and the structure was determined at 1.87 Å resolution. Overall, the tertiary structure is a cluster of α‐helices forming an internal hydrophobic cavity. Absence of conserved Tyr79, known to govern the plasticity of hydrophobic cavity, and formation of hydrogen bond between Asn79 and Asn36 further reduced the pocket size. Structural analysis of SM80.2 thus gives insight about a new hydrogen bond mediated mechanism followed in closure of the binding pocket. Extra electron densities observed at two different places on the protein surface and not in the cavity could provide interesting physiological relevance. In light of allergenic properties, probably overlapping of epitopic region and ligand binding on surface could be a main reason. This work shows first crystal structure of A‐like nsLTP with a close binding pocket and extra density on the surface suggesting a plausible intermediate state during transfer.  相似文献   

12.
Cytoplasmic dilysine motifs on transmembrane proteins are captured by coatomer α‐COP and β′‐COP subunits and packaged into COPI‐coated vesicles for Golgi‐to‐ER retrieval. Numerous ER/Golgi proteins contain K(x)Kxx motifs, but the rules for their recognition are unclear. We present crystal structures of α‐COP and β′‐COP bound to a series of naturally occurring retrieval motifs—encompassing KKxx, KxKxx and non‐canonical RKxx and viral KxHxx sequences. Binding experiments show that α‐COP and β′‐COP have generally the same specificity for KKxx and KxKxx, but only β′‐COP recognizes the RKxx signal. Dilysine motif recognition involves lysine side‐chain interactions with two acidic patches. Surprisingly, however, KKxx and KxKxx motifs bind differently, with their lysine residues transposed at the binding patches. We derive rules for retrieval motif recognition from key structural features: the reversed binding modes, the recognition of the C‐terminal carboxylate group which enforces lysine positional context, and the tolerance of the acidic patches for non‐lysine residues.  相似文献   

13.
This work focused on the development of a combined experimental and computational tool set to study protein-mAb interactions. A model protein library was first screened using cross interaction chromatography to identify proteins with the strongest retention. Fluorescence polarization was then employed to study the interactions and thermodynamics of the selected proteins—lactoferrin, pyruvate kinase, and ribonuclease B with the mAb. Binding affinities of lactoferrin and pyruvate kinase to the mAb were seen to be relatively salt insensitive in the range examined. Further, a strong entropic contribution was observed, suggesting the importance of hydrophobic interactions. On the other hand, ribonuclease B-mAb binding was seen to be enthalpically driven and salt sensitive, indicating the importance of electrostatic interactions. Protein–protein docking was then carried out and the results identified the CDR region on the mAb as an important binding site for all three proteins. The binding interfaces identified for the mAb-lactoferrin and mAb-pyruvate kinase systems were found to contain complementary hydrophobic and oppositely charged clusters on the interacting regions which were indicative of both hydrophobic and electrostatic interactions. On the other hand, the binding site on ribonuclease B was predominantly positively charged with minimal hydrophobicity. This resulted in an alignment with negatively charged clusters on the mAb, supporting the contention that these interactions were primarily electrostatic in nature. Importantly, these computational results were found to be consistent with the fluorescence polarization data and this combined approach may have utility in examining mAb-HCP interactions which can often complicate the downstream processing of biologics. © 2019 American Institute of Chemical Engineers  相似文献   

14.
Enzyme thermoinactivation in anhydrous organic solvents   总被引:3,自引:0,他引:3  
Three unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) display markedly enhanced thermostability in anhydrous organic solvents compared to that in aqueous solution. At 110-145 degrees C in nonaqueous media all three enzymes inactivate due to heat-induced protein aggregation, as determined by gel filtration chromatography. Using bovine pancreatic ribonuclease A as a model, it has been established that enzymes are much more thermostable in hydrophobic solvents (shown to be essentially inert with respect to their interaction with the protein) than in hydrophilic ones (shown to strip water from the enzyme). The heat-induced aggregates of ribonuclease were characterized as both physically associated and chemically crosslinked protein agglomerates, with the latter being in part due to transamidation and intermolecular disulfide interchange reactions. The thermal denaturation of ribonuclease in neat organic solvents has been examined by means of differential scanning calorimetry. In hydrophobic solvents, the enzyme exhibits greatly enhanced thermal denaturation temperatures (T(m) values as high as 124 degrees C) compared to aqueous solution. The thermostability of ribonuclease towards heat-induced denaturation and aggregation decreases as the water content of the protein powder increases. The experimental data obtained suggest that enzymes are extremely thermostable in anhydrous organic solvents due to their conformational rigidity in the dehydrated state and their resistance to nearly all the covalent reactions causing irreversible thermoinactivation of enzymes in aqueous solution.  相似文献   

15.
The complex dynamic behavior of microtubules (MTs) is believed to be primarily due to the αβ‐tubulin dimer architecture and its intrinsic GTPase activity. Hence, a detailed knowledge of the conformational variations of isolated α‐GTP‐β‐GTP‐ and α‐GTP‐β‐GDP‐tubulin dimers in solution and their implications to interdimer interactions and stability is directly relevant to understand the MT dynamics. An attempt has been made here by combining molecular dynamics (MD) simulations and protein–protein docking studies that unravels key structural features of tubulin dimer in different nucleotide states and correlates their association to tubulin assembly. Results from simulations suggest that tubulin dimers and oligomers attain curved conformations in both GTP and GDP states. Results also indicate that the tubulin C‐terminal domain and the nucleotide state are closely linked. Protein–protein docking in combination with MD simulations suggest that the GTP‐tubulin dimers engage in relatively stronger interdimer interactions even though the interdimer interfaces are bent in both GTP and GDP tubulin complexes, providing valuable insights on in vitro finding that GTP‐tubulin is a better assembly candidate than GDP‐tubulin during the MT nucleation and elongation processes. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 282–291, 2013.  相似文献   

16.
A two‐conformation, four‐state model has been proposed to describe protein adsorption and unfolding behavior on hydrophobic interaction chromatography (HIC) resins. In this work, we build upon previous study and application of a four‐state model to the effect of salt concentration on the adsorption and unfolding of the model protein α‐lactalbumin in HIC. Contributions to the apparent adsorption strength of the wild‐type protein from native and unfolded conformations, obtained using a deuterium labeling technique, reveal the free energy change and kinetics of unfolding on the resin, and demonstrate that surface unfolding is reversible. Additionally, variants of α‐lactalbumin in which one of the disulfide bonds is reduced were synthesized to examine the effects of conformational stability on apparent retention. Below the melting temperatures of the wild‐type protein and variants, reduction of a single disulfide bond significantly increases the apparent adsorption strength (~6–8 kJ/mol) due to increased instability of the protein. Finally, the four‐state model is used to accurately predict the apparent adsorption strength of a disulfide bond‐reduced variant. Biotechnol. Bioeng. 2009;102: 1416–1427. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
The addition of fluid phase modifiers provides significant opportunities for increasing the selectivity of multimodal chromatography. In order to optimize this selectivity, it is important to understand the fundamental interactions between proteins and these modifiers. To this end, molecular dynamics (MD) simulations were first performed to study the interactions of guanidine and arginine with three proteins. The simulation results showed that both guanidine and arginine interacted primarily with the negatively charged regions on the proteins and that these regions could be readily predicted using electrostatic potential maps. Protein surface characterization was then carried out using computationally efficient coarse‐grained techniques for a broader set of proteins which exhibited interesting chromatographic retention behavior upon the addition of these modifiers. It was shown that proteins exhibiting an increased retention in the presence of guanidine possessed hydrophobic regions adjacent to negatively charged regions on their surfaces. In contrast, proteins which exhibited a decreased binding in the presence of guanidine did not have hydrophobic regions adjacent to negatively charged patches. These results indicated that the effect of guanidine could be described as a combination of competitive binding, charge neutralization and increased hydrophobic interactions for certain proteins. In contrast, arginine resulted in a significant decrease in protein retention times primarily due to competition for the resin and steric effects, with minimal accompanying increase in hydrophobic interactions. The approach presented in this paper which employs MD simulations to guide the application of coarse‐grained approaches is expected to be extremely useful for methods development in downstream bioprocesses. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:435–447, 2017  相似文献   

18.
Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N‐carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α‐chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un‐substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α‐chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α‐chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD‐NMR technique was successfully used to screen cyanine–protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Peptides with angiotensin‐converting enzyme (ACE)‐inhibitory and antihypertensive effects are suggested as innovative food additives to prevent or treat hypertension. Currently, these substances are isolated from food proteins following nonselective hydrolysis as a mixture of ACE‐inhibitory peptides and other protein fragments. This study presents an innovative biotechnological method, based on recombinant DNA technology that was established to specifically produce the ACE‐inhibitory dipeptide isoleucine‐tryptophan. In a first step, a repetitive isoleucine‐tryptophan construct fused to the maltose‐binding protein was generated and expressed in Escherichia coli BL21 cells. The chromatographically purified recombinant fusion protein was enzymatically hydrolyzed using α‐chymotrypsin to liberate the dipeptide isoleucine‐tryptophan. The identity of the liberated isoleucine‐tryptophan was confirmed by MS and derivatization of its N‐terminus. The ACE‐inhibitory effect of the recombinant dipeptide on soluble and membrane bound ACE was found to be indistinguishable from the inhibitory potential of the chemically produced commercially available dipeptide. The established experimental strategy represents a promising approach to the biotechnical production of sufficient amounts of recombinant peptide‐based ACE‐inhibitory and antihypertensive substances that are applicable as functional food additives to delay or even prevent hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号