首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary (CHO) cells are often used to produce therapeutic monoclonal antibodies (mAbs). CHO cells express many host cell proteins (HCPs) required for their growth. Interactions of HCPs with mAbs can sometimes result in co‐purification of trace levels of ‘hitchhiker’ HCPs during the manufacturing process. Purified mAb‐1 product produced in early stages of process optimization had high HCP levels. In addition, these lots formed delayed‐onset particles containing mAb‐1 and its heavy chain C‐terminal fragments. Studies were performed to determine the cause of the observed particle formation and to optimize the purification for improved HCP clearance. Protease activity and inhibitor stability studies confirmed that an aspartyl protease was responsible for fragmentation of mAb‐1 resulting in particle formation. An affinity resin was used to selectively capture aspartyl proteases from the mAb‐1 product. Mass spectrometry identified the captured aspartyl protease as CHO cathepsin D. A wash step at high pH with salt and caprylate was implemented during the protein A affinity step to disrupt the HCP–mAb interactions and improve HCP clearance. The product at the end of purification using the optimized process had very low HCP levels, did not contain detectable protease activity, and did not form particles. Spiking of CHO cathepsin D back into mAb‐1 product from the optimized process confirmed that it was the cause of the particle formation. This work demonstrated that process optimization focused on removal of HCPs was successful in eliminating particle formation in the final mAb‐1 product. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1360–1369, 2015  相似文献   

2.
Co‐purification of a subset of host cell proteins (HCPs) with monoclonal antibodies (mAbs) during the capture of mAbs on Protein A affinity chromatography is primarily caused by interactions of HCPs with the mAbs. To date, there is limited information about the identity of those HCPs due to the difficulty in detecting low abundance HCPs in the presence of a large amount of the mAb. Here, an approach is presented that allows identification of HCPs that specifically associate with the mAb, while avoiding interference from the mAb itself. This approach involves immobilization of purified mAb onto chromatography resin via cross‐linking, followed by incubation with HCPs obtained from supernatant of non‐mAb producer cells that are representative of the expression systems used in mAb manufacturing. The HCPs that bind to the mAb are recovered and identified using mass spectrometry. This approach has not only allowed a comprehensive comparison of HCP subpopulations that associate with different mAbs, but also enabled monitoring of the effects of a variety of wash modifiers on the dissociation of individual HCP–mAb interactions. The dissociation of HCPs that associated with the mAb was monitored by enzyme‐linked immunosorbent assay and mass spectrometry. This approach can be utilized as a screening tool to assist the development of effective and targeted wash steps in Protein A chromatography that ensures not only reduction of HCP levels copurified with the mAb but also removal of specific HCPs that may have a potential impact on mAb structural stability and patient safety. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1114–1124, 2014  相似文献   

3.
Host cell proteins (HCPs) constitute a major group of impurities for biologic drugs produced using cell culture technology. HCPs are required to be closely monitored and adequately removed in the downstream process. However, HCPs are a complex mixture of proteins with significantly diverse molecular and immunological properties. An overall understanding of the composition of HCPs and changes in their molecular properties upon changes in upstream and harvest process conditions can greatly facilitate downstream process design. This article describes the use of a comparative proteomic profiling method viz. two‐dimensional difference gel electrophoresis (2D‐DIGE) to examine HCP composition in the harvest stream of CHO cell culture. The effect of upstream process parameters such as cell culture media, bioreactor control strategy, feeding strategy, and cell culture duration/cell viability on HCP profile was examined using this technique. Among all the parameters studied, cell viability generated the most significant changes on the HCP profile. 2D‐DIGE was also used to compare the HCP differences between monoclonal antibody producing and null cell cultures. The HCP species in production cell culture was found to be well represented in null cell culture, which confirms the suitability of using the null cell culture for immunoassay reagent generation. 2D‐DIGE is complimentary to the commonly used HCP immunoassay. It provides a direct comparison of the changes in HCP composition under different conditions and can reveal properties (pI, MW) of individual species, whereas the immunoassay sensitively quantifies total HCP amount in a given sample. Biotechnol. Bioeng. 2010; 105: 306–316. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Residual host cell protein impurities (HCPs) are a key component of biopharmaceutical process related impurities. These impurities need to be effectively cleared through chromatographic steps in the downstream purification process to produce safe and efficacious protein biopharmaceuticals. A variety of strategies to demonstrate robust host cell protein clearance using scale-down studies are highlighted and compared. A common strategy is the "spiking" approach, which is widely employed in clearance studies for well-defined impurities. For HCPs this approach involves spiking cell culture harvest, which is rich in host cell proteins, into the load material for all chromatographic steps to assess their clearance ability. However, for studying HCP clearance, this approach suffers from the significant disadvantage that the vast majority of host cell protein impurities in a cell culture harvest sample are not relevant for a chromatographic step that is downstream of the capture step in the process. Two alternative strategies are presented here to study HCP clearance such that relevance of those species for a given chromatographic step is taken into consideration. These include a "bypass" strategy, which assumes that some of the load material for a chromatographic step bypasses that step and makes it into the load for the subsequent step. The second is a "worst-case" strategy, which utilizes information obtained from process characterization studies. This involves operating steps at a combination of their operating parameters within operating ranges that yield the poorest clearance of HCPs over that step. The eluate from the worst case run is carried forward to the next chromatographic step to assess its ability to clear HCPs. Both the bypass and worst-case approaches offer significant advantages over the spiking approach with respect to process relevance of the HCP impurity species being studied. A combination of these small-scale validation approaches with large-scale HCP clearance data from clinical manufacturing and manufacturing consistency runs is used to demonstrate robust HCP clearance for the downstream purification process of an Fc fusion protein. The demonstration of robust HCP clearance through this comprehensive strategy can potentially be used to eliminate the need for routine analytical testing or for establishing acceptance criteria for these impurities as well as to demonstrate robust operation of the entire downstream purification process.  相似文献   

5.
Single‐chain variable fragments (scFv) are widely used in several fields. However, they can be challenging to purify unless using expensive Protein L‐based affinity adsorbents or affinity tags. In this work, a purification process for a scFv using mixed‐mode (MM) chromatography was developed by design of experiments (DoE) and proteomics for host cell protein (HCP) quantification. Capture of scFv from human embryonic kidney 293 (HEK293) cell feedstocks was performed by hydrophobic charge induction chromatography (MEP HyperCel?), whereafter polishing was performed by anion hydrophobic MM chromatography (Capto Adhere?). The DoE designs of the polishing step included both binding and flow‐through modes, the latter being the standard mode for HCP removal. Chromatography with Capto Adhere? in binding‐mode with elution by linear salt gradient at pH 7.5 resulted in optimal yield, purity and HCP reduction factor of 98.9 > 98.5%, and 14, respectively. Totally, 258 different HCPs were removed, corresponding to 84% of identified HCPs. The optimized conditions enabled binding of the scFv to Capto Adhere? below its theoretical pI, while the majority of HCPs were in the flow‐through. Surface property maps indicated the presence of hydrophobic patches in close proximity to negatively charged patches that could potentially play a role in this unique selectivity.  相似文献   

6.
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016  相似文献   

7.
The clearance of host cell proteins (HCPs) is of crucial importance in biomanufacturing, given their diversity in composition, structure, abundance, and occasional structural homology with the product. The current approach to HCP clearance in the manufacturing of monoclonal antibodies (mAbs) relies on product capture with Protein A followed by removal of residual HCPs in flow-through mode using ion exchange or mixed-mode chromatography. Recent studies have highlighted the presence of “problematic HCP” species, which are either difficult to remove (Group I), can degrade the mAb product (Group II), or trigger immunogenic reactions (Group III). To improve the clearance of these species, we developed a family of synthetic peptides that target HCPs and exhibit low binding to IgG product. In this study, these peptides were conjugated onto chromatographic resins and evaluated in terms of HCP clearance and mAb yield, using an industrial mAb-producing CHO harvest as model supernatant. To gather detailed knowledge on the binding of individual HCPs, the unbound fractions were subjected to shotgun proteomic analysis by mass spectrometry. It was found that these peptide ligands exhibit superior HCP binding capability compared to those of the benchmark commercial resins commonly used in mAb purification. In addition, some peptide-based resins resulted in much lower losses of product yield compared to these commercial supports. The proteomic analysis showed effective capture of many “problematic HCPs” by the peptide ligands, especially some that are weakly bound by commercial media. Collectively, these results indicate that these peptides show great promise toward the development of next-generation adsorbents for safer and cost-effective manufacturing of biologics.  相似文献   

8.
Apolipoprotein A 1 Milano (ApoA‐1M), the protein component of a high‐density lipoprotein (HDL) mimic with promising potential for reduction of atherosclerotic plaque, is produced at large scale by expression in E. coli. Significant difficulty with clearance of host cell proteins (HCPs) was experienced in the original manufacturing process despite a lengthy downstream purification train. Analysis of purified protein solutions and intermediate process samples led to identification of several major HCPs co‐purifying with the product and a bacterial protease potentially causing a specific truncation of ApoA‐1M found in the final product. Deletion of these genes from the original host strain succeeded in substantially reducing the levels of HCPs and the truncated species without adversely affecting the overall fermentation productivity, contributing to a much more efficient and robust new manufacturing process. Biotechnol. Bioeng. 2010; 105: 239–249. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.  相似文献   

11.
12.
The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme‐linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk‐based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar initiatives. The development of such an approach requires databases based on cumulative knowledge of multiple risk factors that would require national and international regulators, standards authorities (e.g., NIST and NIBSC), industry and academia to all be involved in shaping what is the best approach to the adoption of the latest bioanalytical technology to this area, which is vital to delivering safe efficacious biological medicines of all types. Biotechnol. Bioeng. 2015;112: 1727–1737. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

13.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013  相似文献   

14.
Process development in up‐ and downstream processing requires enhanced, non‐time‐consuming, and non‐expensive monitoring techniques to track product purity, for example, the level of endotoxins, viral particles, and host cell proteins (HCPs). Currently, HCP amounts are measured by laborious and expensive HCP‐enzyme‐linked immunosorbent assay (ELISA) assays best suited for measuring HCP amounts in the low concentration regime. The measurement of higher HCP amounts using this method requires dilution steps, adding dilution errors to the measurement. In this work we evaluated the suitability of attenuated total reflection spectroscopy for HCP quantification in process development, using clarified cell culture fluid from monoclonal antibody producing Chinese hamster ovary‐cells after treatment with different polyelectrolytes for semi‐selective clarification. Forty undiluted samples were chosen for multivariate data analysis in the middle infrared range and predicted HCP‐values were in good agreement with results obtained by an ELISA‐assay, suggesting the suitability of this new method for HCP‐quantification. As this method is able to quantify HCP titers ranging from approximately at least 20,000–200,000 ng mL?1, it is suitable especially for monitoring of process development steps with higher HCP concentrations, omitting dilution errors associated with ELISA assays. Biotechnol. Bioeng. 2013; 110: 252–259. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.  相似文献   

16.
Monitoring host cell proteins (HCPs) is one of the most important analytical requirements in production of recombinant biopharmaceuticals to ensure product purity and patient safety. Enzyme-linked immunosorbent assay (ELISA) is the standard method for monitoring HCP clearance. It is important to validate that the critical reagent of an ELISA, the HCP antibody, covers a broad spectrum of the HCPs potentially present in the purified drug substance. Current coverage methods for assessing HCP antibody coverage are based on 2D-Western blot or immunoaffinity-purification combined with 2D gel electrophoresis and have several limitations. In the present study, we present a novel coverage method combining ELISA-based immunocapture with protein identification by liquid chromatography–tandem mass spectrometry (LC–MS/MS): ELISA-MS. ELISA-MS is used to accurately determine HCP coverage of an early process sample by three commercially available anti-Escherichia coli HCP antibodies, evading the limitations of current methods for coverage analysis, and taking advantage of the benefits of MS analysis. The results obtained comprise a list of individual HCPs covered by each HCP antibody. The novel method shows high sensitivity, high reproducibility, and enables tight control of nonspecific binding through inclusion of a species-specific isotype control antibody. We propose that ELISA-MS will be a valuable supplement to existing coverage methods or even a replacement. ELISA-MS will increase the possibility of selecting the best HCP ELISA, thus improving HCP surveillance and resulting in a final HCP profile with the lowest achievable risk. Overall, this will be beneficial to both the pharmaceutical industry and patient safety.  相似文献   

17.
High‐throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high‐throughput mini‐bioreactor system viz. the Advanced Microscale Bioreactor (ambr15TM), to perform process characterization in less than a month and develop an input control strategy. As a pre‐requisite to process characterization, a scale‐down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale‐down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15TM system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1623–1632, 2015  相似文献   

18.
For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process-related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP-ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb-production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up- and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in-process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.  相似文献   

19.
20.
Host cell proteins (HCPs) must be adequately removed from recombinant therapeutics by downstream processing to ensure patient safety, product quality, and regulatory compliance. HCP process clearance is typically monitored by enzyme-linked immunosorbent assay (ELISA) using a polyclonal reagent. Recently, mass spectrometry (MS) has been used to identify specific HCP process impurities and monitor their clearance. Despite this capability, ELISA remains the preferred analytical approach due to its simplicity and throughput. There are, however, inherent difficulties reconciling the protein-centric results of MS characterization with ELISA, or providing assurance that ELISA has acceptable coverage against all process-specific HCP impurities that could pose safety or efficacy risks. Here, we describe efficient determination of ELISA reagent coverage by proteomic analysis following affinity purification with a polyclonal anti-HCP reagent (AP-MS). The resulting HCP identifications can be compared with the actual downstream process impurities for a given process to enable a highly focused assessment of ELISA reagent suitability. We illustrate the utility of this approach by performing coverage evaluation of an anti-HCP polyclonal against both an HCP immunogen and the downstream HCP impurities identified in a therapeutic monoclonal antibody after Protein A purification. The overall goal is to strategically implement affinity-based mass spectrometry as part of a holistic framework for evaluating HCP process clearance, ELISA reagent coverage, and process clearance risks. We envision coverage analysis by AP-MS will further enable a framework for HCP impurity analysis driven by characterization of actual product-specific process impurities, complimenting analytical methods centered on consideration of the total host cell proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号