首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential oils from the leaves of Citrus macroptera and C. hystrix, collected in New Caledonia, have been analyzed by gas chromatography/mass spectrometry (GC/MS) and evaluated for their antimicrobial activity. A total of 35 and 38 constituents were identified, representing 99.1 and 89.0% of the essential oils, respectively. Both essential oils were rich in monoterpenes (96.1 and 87.0%, resp.), with β‐pinene as major component (33.3 and 10.9%, resp.), and poor in limonene (2.4 and 4.7%, resp.). Other main components of C. macroptera oil were α‐pinene (25.3%), p‐cimene (17.6%), (E)‐β‐ocimene (6.7%), and sabinene (4.8%). The essential oil of C. hystrix was characterized by high contents of terpinen‐4‐ol (13.0%), α‐terpineol (7.6%), 1,8‐cineole (6.4%), and citronellol (6.0%). The antimicrobial activity was evaluated against five bacteria and five fungi strains. Both oils were inactive against bacteria. However, the C. macroptera leaf oil exhibited a pronounced activity against Trichophyton mentagrophytes var. interdigitale, with a minimal‐inhibitory concentration (MIC) of 12.5 μg/ml.  相似文献   

2.
The essential oil isolated from the bark of Cinnamomum glanduliferum (Wall ) Meissn grown in Egypt was screened for its composition as well as its biological activity for the first time. The chemical composition was analyzed by GC and GC/MS. The antimicrobial activity of the oil was assessed using agar‐well diffusion method toward representatives for each of Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cytotoxic activity was checked using three human cancer cell lines. Twenty seven compounds were identified, representing 99.07% of the total detected components. The major constituents were eucalyptol (65.87%), terpinen‐4‐ol (7.57%), α‐terpineol (7.39%). The essential oil possessed strong antimicrobial activities against Escherichia coli, with an activity index of one and minimum inhibitory concentration (MIC) equaling to 0.49 μg/ml. The essential oil possessed good antimicrobial activities against methicillin‐resistant Staphylococcus aureus, Geotrichum candidum, Pseudomonas aeruginosa, Bacillus subtilis, Helicobacter pylori, Aspergillus fumigatus (MIC: 7.81, 1.95, 7.81, 0.98, 31.25, and 32.5 μg/ml, respectively). A considerable activity was reported against S. aureus and Mycobacterium tuberculosis (MIC; 32.5 and 31.25 μg/ml, respectively). The extracted oil was cytotoxic to colon (HCT‐116), liver (HepG2), and breast (MCF‐7) carcinoma cell lines with IC50 of 9.1, 42.4, and 57.3 μg/ml, respectively. These results revealed that Egyptian Cinnamomum glanduliferum bark oil exerts antimicrobial and cytotoxic activities mainly due to eucalyptol and other major compounds.  相似文献   

3.
This study reports the results of gas chromatography–mass spectrometry (GC–MS) analyses of the essential oil of Angelica archangelica L. (Apiaceae) roots, as well as its in vitro antifungal activity against 10 plant pathogenic fungi. Moreover, the essential oil was evaluated for its antifungal activity using the agar dilution method, and also minimum inhibitory concentrations and minimum fungicidal concentrations were determined. The major compounds identified by GC–MS were α-pinene (21.3%), δ-3-carene (16.5%), limonene (16.4%), and α-phellandrene (8.7%). The oil showed in vitro antifungal activity against some species of the Fusarium genus, Botrytis cinerea, and Alternaria solani. Our study indicates that the oil of A. archangelica could be used as a control agent for plant pathogenic fungi in natural formulations.  相似文献   

4.
The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)‐dec‐2‐enal (52.0%), (E)‐dodec‐2‐enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)‐dec‐2‐enal presented a lower antifungal activity than the essential oil.  相似文献   

5.
The composition of essential oil isolated from Thymus algeriensis growing wild in Libya was analyzed by GC and GC-MS. The essential oil was characterized with thymol (38.50%) as the major component. The oil was screened for antioxidant activity using DPPH assay, and compared to thymol and carvacrol. Antioxidant activity was high, with the IC50 of 0.299 mg/ml, compared to 0.403 and 0.105 mg/ml for thymol and carvacrol, and 0.0717 mg/ml for BHA. In addition, antimicrobial activity was tested against eight bacteria and eight fungi. T. algeriensis oil showed inhibitory activity against tested bacteria at 0.001–0.05 mg/ml, while bactericidal activity (MBC) was achieved at 0.0025–0.05 mg/ml. For antifungal activity MICs ranged 0.0005–0.025 mg/ml and MFC 0.001–0.05 mg/ml. High antimicrobial activity against the fungi in particular suggests that the essential oil of Thymus algeriensis could have a useful practical application.  相似文献   

6.
This work describes the study of the chemical composition and bioactivity of the essential oils (EOs) of the different organs (leaves, flowers, stems and roots) from Eruca vesicaria. According to the GC and GC/MS analysis, all the EOs were dominated by erucin (4‐methylthiobutyl isothiocyanate) with a percentage ranging from 17.9 % (leaves) to 98.5 % (roots). The isolated EOs were evaluated for their antioxidant (DPPH, ABTS and β‐carotene/linoleic acid), antibacterial and inhibitory property against α‐amylase and α‐glucosidase. Most EOs exhibited an interesting α‐glucosidase and α‐amylase inhibitory potential. The roots essential oil was found to be the most active with IC50 values of 0.80±0.06 and 0.11±0.01 μg mL?1, respectively. The essential oil of roots exhibited the highest antioxidant activity (DPPH, PI=92.76±0.01 %; ABTS, PI=78.87±0.19; and β‐carotene, PI=56.1±0.01 %). The isolated oils were also tested for their antibacterial activity against two Gram‐positive and three Gram‐negative bacteria. Moderate results have been noted by comparison with Gentamicin used as positive control.  相似文献   

7.
The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC‐FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α‐pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth‐microdilution method against four Gram‐positive and three Gram‐negative bacteria and two Candida albicans strains. Except the L. latifolium underground‐parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0–73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound.  相似文献   

8.
A detailed analysis of Rhaponticum carthamoides (Willd.) Iljin root essential oil was carried out by GC, GC-MS and GC-FTIR techniques. In total, 30 components were identified, accounting for 98.0% of total volatiles. A norsesquiterpene 13-norcypera-1(5),11(12)-diene (22.6%), followed by aplotaxene (21.2%) and cyperene (17.9%), were isolated and their structures confirmed by 1D and 2D-NMR spectra (COSY, ROESY, HSQC, HMBC and INADEQUATE). Selinene type sesquiterpenes and aliphatic hydrocarbons were among minor constituents of the essential oil. The oil exhibited antimicrobial activity against 5 of 9 strains of bacteria and yeast, when tested using broth micro-dilution method. Minimum inhibitory concentrations ranged between 32 and 256 μg/ml.  相似文献   

9.
The chemical compositions and antimicrobial activities of the essential oils (EOs) of aerial parts of Salvia multicaulis Vahl , collected during the same week from two different Lebanese regions, were investigated. The EOs were obtained by hydrodistillation using a Clevenger‐type apparatus and characterized by GC and GC/MS analyses. The minimum inhibitory concentrations of these EOs were determined against one Gram‐negative and two Gram‐positive bacteria, one yeast, and five dermatophytes using the broth microdilution technique. One EO was notably active against Staphylococcus aureus, methicillin‐resistant S. aureus, and all of the Trichophyton species tested. Nerolidol was found to be the major compound in the active oil; nerolidol was also absent from the inactive oil. This study demonstrated that nerolidol shows antimicrobial activity and therefore significantly contributes to the antimicrobial potential of the oil. The chemical diversity of worldwide S. multicaulis EOs was analyzed, revealing that the EOs of this study belong to two different chemotypes found in the literature. The nerolidol chemotype appears to be restricted to Lebanon, and it can be used as antimicrobial agent against external bacterial and fungal infections.  相似文献   

10.
Various species of the genus Phlomis have been reported to produce metabolites demonstrating significant pharmacological efficiency. In this study, the essential oils from twelve populations of Phlomis olivieri collected from natural habitats were investigated for their chemical components. The hydrodistillated essential oil analyzed by GC‐FID and GC/MS. Analyses revealed 27 compounds, constituting 90.52 – 98.51% of the essential oils. Results indicated that the major components of the essential oils from various populations of P. olivieri were germacrene D (26.54 – 56.41%), bicyclogermacrene (6.38 – 30.55%), β‐caryophyllene (5.32 – 24.52%) and α‐pinene (1.29 – 15.53%). Principal component analyses (PCA) was used to identify any geographical variations in essential oil composition. Notably, three groups of Iranian P. olivieri populations were determined according to the major compounds. Results of the in vitro antibacterial activity indicated that P. olivieri essential oils showed good inhibitory activities against bacteria, especially Bacillus subtilis. The results of this study gave new insights for cultivation and industrial uses of P. olivieri in Iran.  相似文献   

11.
In an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC‐FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88–91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone ( 2 ; 11.27–37.48%), camphor ( 3 , 1.94–21.8%), 1,8‐cineole ( 1 ; 0.16–8.71%), and viridiflorol ( 10 ; 2.89–7.38%). The assessed in vitro biological properties demonstrated that the DPPH‐based radical‐scavenging activities and the inhibition of the β‐carotene/linoleic acid‐based lipid oxidation differed by an eight‐fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml.  相似文献   

12.
Characterization by GC‐FID and GC/MS analyses of the Stachys officinalis (L.) Trevis . essential oil obtained by hydrodistillation of the aerial parts allowed the identification of 190 components that represented 97.9% of the total oil content. The main constituents identified were germacrene D (19.9%), β‐caryophyllene (14.1%), and α‐humulene (7.5%). Terpenoids were by far predominant (89.4%), with sesquiterpene hydrocarbons (69.1%) and oxygenated sesquiterpenes (14.8%) being the most abundant compounds detected in the oil. Based on the present and previously published results, multivariate statistical comparison of the chemical composition of the essential oils was performed within the species. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) of the data on the volatile profiles of S. officinalis taxa revealed no pronounced differences among the samples originated from the Balkan Peninsula. Additionally, the oil was screened for in vitro antibacterial and antifungal activity using the broth microdilution assay. The oil's best antimicrobial activities were obtained against the mold Aspergillus niger (minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of 2.5 and 5.0 mg/ml, resp.) and the yeast Candida albicans (MIC and MFC of 5.0 mg/ml).  相似文献   

13.
The chemical composition of the essential oil isolated from the aerial parts of Melampodium divaricatum (Rich .) DC. (Asteraceae) was characterized by GC‐FID and GC/MS analyses. (E)‐Caryophyllene (56.0%), germacrene D (12.7%), and bicyclogermacrene (9.2%) were identified as the major oil components. The antimicrobial activity of the oil against seven standard strains of oral pathogens from the American Type Culture Collection (ATCC) was evaluated by determining minimum inhibitory concentrations (MICs) using the microdilution method. MIC Values below 100 μg/ml were obtained against Streptococcus sobrinus (90 μg/ml), Lactobacillus casei (30 μg/ml), S. mutans (20 μg/ml), and S. mitis (18 μg/ml). In contrast, the MIC values of the major oil compound (E)‐caryophyllene were higher than 400 μg/ml against all pathogens, suggesting that the activity of the oil might depend on minor oil components and/or on synergistic effects. The M. divaricatum essential oil is a promising agent to include in anticariogenic oral rinse formulations for the control of oral pathogens.  相似文献   

14.
The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α‐pinene (9.66%), germacrene D (7.55%), 1,8‐cineole (7.24%), transβ‐caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram‐positive and Gram‐negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell‐associated and soluble virulence factors.  相似文献   

15.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

16.
Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC‐FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8‐cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)‐methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram‐positive and three Gram‐negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ~ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ~ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.  相似文献   

17.
The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl ., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ‐selinene (11.60%), β‐pinene (10.87%), (E,E)‐farnesyl acetate (8.65%), and α‐terpineol (6.38%), while those of the leaf oil were β‐pinene (39.61%), α‐pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.  相似文献   

18.
Myrtus communis is a typical plant of the Mediterranean area, which is mainly used as animal and human food and, in folk medicine, for treating some disorders. In the present study, we evaluated in vitro antibacterial and antifungal properties of the essential oils of Myrtus communis (McEO), as well as its phytochemical composition. The GC/MS analysis of the essential oil revealed 17 compounds. Myrtenyl acetate (20.75%), 1,8‐cineol (16.55%), α‐pinene (15.59%), linalool (13.30%), limonene (8.94%), linalyl acetate (3.67%), geranyl acetate (2.99%), and α‐terpineol (2.88%) were the major components. The antimicrobial activity of the essential oil was also investigated on several microorganisms. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 16–28 mm and 0.078–2.5 mg/ml, respectively. The inhibitory activity of the McEO against Gram‐positive bacteria was significantly higher than against Gram‐negative. It also exhibited remarkable activity against several fungal strains. The investigation of the mode of action of the McEO by the time‐kill curve against Listeria monocytogenes (food isolate) showed a drastic bactericidal effect after 5 min using a concentration of 312 μg/ml. These results evidence that the McEO possesses antimicrobial properties, and it is, therefore, a potential source for active ingredients for food and pharmaceutical industries.  相似文献   

19.
The essential oils obtained by hydrodistillation of leaves and stems of Chloroxylon swietenia DC. were analysed by GC and GC-MS. The main components in the leaf oil were limonene, pregeijerene, geijerene and germacrene D, while stem oil was rich in limonene, methyl eugenol, pregeijerene and geijerene. The essential oils were evaluated for antimicrobial activity against two gram-positive and two gram-negative bacteria and four pathogenic fungi using agar disc diffusion technique. Subsequently, the minimum inhibitory concentration (MIC) from oils was determined by broth microdilution. Both the oils exhibited moderate to strong activities against all the organisms tested. Bacillus subtilis was most susceptible at 100 μg/ml of leaf and stem oils with inhibition zones of 15.9 and 13.1 mm respectively. Among all the fungi tested, A. niger inhibited effectively with a zone of inhibition of 14.9 and 11.5 mm for leaf and stem oils respectively. The results obtained suggest that the essential oils of the plant possess antimicrobial properties and serve as a biofriendly source of antimicrobial ingredients for the food and pharmaceutical industries.  相似文献   

20.
The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential‐oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC‐FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk‐diffusion assay. The studied essential oil was active only against Gram‐positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号