首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
后生动物非编码保守元件   总被引:1,自引:0,他引:1  
冯俊  李光  王义权 《遗传》2013,35(1):35-44
生物体基因组中除了编码序列之外, 还存在大量的非编码调控序列。比较基因组学研究发现:脊椎动物、尾索动物、头索动物、果蝇、线虫等基因组中存在保守的非编码调控序列。这些非编码保守元件通常分布在与转录调控发育相关的基因上下游区域, 作为基因调控网络核心的一部分, 常常在基因表达过程中扮演转录增强子的角色。文章总结了近年来有关后生动物非编码保守元件的发现和主要特点, 并进一步就非编码保守元件在大规模基因组倍增之后的演化及其在生物躯体图式进化过程中的影响进行了综述。  相似文献   

2.
The origin of the vertebrates was a major event in the evolution of morphological diversity and the genetic mechanisms responsible for this diversity, once purely theoretical, can now be approached experimentally in the genome era. With a prototypical chordate genome, vertebrate-like development and simple morphology, amphioxus provides the appropriate model for investigating the origin of the vertebrates. Comparative genomics is revealing that both conservation and divergence of genes and cis-regulatory elements involved in developmental regulatory networks are required to shape different animal body plans. This article reviews the cis-regulatory studies performed in amphioxus, the discovery of conserved non-coding elements (CNEs) across the metazoans and the examination of amphioxus CNEs. Emerging ideas on the evolution of CNEs after large-scale genome duplication events and the state of cephalochordate genomics are also discussed.  相似文献   

3.
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.  相似文献   

4.
5.
Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage.  相似文献   

6.
7.
8.
9.
Within the vertebrate lineage, a high proportion of duplicate genes have been retained after whole genome duplication (WGD) events. It has been proposed that many of these duplicate genes became indispensable because the ancestral gene function was divided between them. In addition, novel functions may have evolved, owing to changes in cis-regulatory elements. Functional analysis of the PAX2/5/8 gene subfamily appears to support at least the first part of this hypothesis. The collective role of these genes has been widely retained, but sub-functions have been differentially partitioned between the genes in different vertebrates. Conserved non-coding elements (CNEs) represent an interesting and readily identifiable class of putative cis-regulatory elements that have been conserved from fish to mammals, an evolutionary distance of 450 million years. Within the PAX2/5/8 gene subfamily, PAX2 is associated with the highest number of CNEs. An additional WGD experienced in the teleost lineage led to two copies of pax2, each of which retained a large proportion of these CNEs. Using a reporter gene assay in zebrafish embryos, we have exploited this rich collection of regulatory elements in order to determine whether duplicate CNEs have evolved different functions. Remarkably, we find that even highly conserved sequences exhibit more functional differences than similarities. We also discover that short flanking sequences can have a profound impact on CNE function. Therefore, if CNEs are to be used as candidate enhancers for transgenic studies or for multi-species comparative analyses, it is paramount that the CNEs are accurately delineated.  相似文献   

10.
Correlation of gene and protein structure of rat and human lipocortin I   总被引:5,自引:0,他引:5  
Lipocortins (annexins) are a family of calcium-dependent phospholipid-binding proteins with phospholipase A2 inhibitory activity. The characteristic primary structure of members of this family consists of a core structure of four or eight repeated domains, which have been implicated in calcium-dependent phospholipid binding. In two lipocortins (I and II) a short amino-terminal sequence distinct from the core structure has potential regulatory functions which are dependent on its phosphorylation state. We have isolated the rat and the human lipocortin I genes and found that they both consist of 13 exons with a striking conservation of their exon-intron structure and their promoter and amino acid sequences. Both lipocortin I genes are at least 19 kbp in length with exons ranging from 57 to 123 bp interrupted by introns as large as 5 kbp. Each of the four repeat units of lipocortin I are encoded by two consecutive exons while individual exons code for the highly conserved putative calcium-binding domains. The promoter sequences in the rat and in human genes are highly conserved and contain nucleotide sequences characterized as enhancer sequences in other genes. The structure of the lipocortin I gene lends support to the hypothesis that the lipocortin genes arose by a duplication of a single domain.  相似文献   

11.
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA.  相似文献   

12.
Comparison of polymorphism at synonymous and non-synonymous sites in protein-coding DNA can provide evidence for selective constraint. Non-coding DNA that forms part of the regulatory landscape presents more of a challenge since there is not such a clear-cut distinction between sites under stronger and weaker selective constraint. Here, we consider putative regulatory elements termed Conserved Non-coding Elements (CNEs) defined by their high level of sequence identity across all vertebrates. Some mutations in these regions have been implicated in developmental disorders; we analyse CNE polymorphism data to investigate whether such deleterious effects are widespread in humans. Single nucleotide variants from the HapMap and 1000 Genomes Projects were mapped across nearly 2000 CNEs. In the 1000 Genomes data we find a significant excess of rare derived alleles in CNEs relative to coding sequences; this pattern is absent in HapMap data, apparently obscured by ascertainment bias. The distribution of polymorphism within CNEs is not uniform; we could identify two categories of sites by exploiting deep vertebrate alignments: stretches that are non-variant, and those that have at least one substitution. The conserved category has fewer polymorphic sites and a greater excess of rare derived alleles, which can be explained by a large proportion of sites under strong purifying selection within humans – higher than that for non-synonymous sites in most protein coding regions, and comparable to that at the strongly conserved trans-dev genes. Conversely, the more evolutionarily labile CNE sites have an allele frequency distribution not significantly different from non-synonymous sites. Future studies should exploit genome-wide re-sequencing to obtain better coverage in selected non-coding regions, given the likelihood that mutations in evolutionarily conserved enhancer sequences are deleterious. Discovery pipelines should validate non-coding variants to aid in identifying causal and risk-enhancing variants in complex disorders, in contrast to the current focus on exome sequencing.  相似文献   

13.
14.
15.
16.
17.
The rat alpha- and bovine alpha s1-casein genes have been isolated and their 5' sequences determined. The rat alpha-, beta-, gamma- and bovine alpha s1-casein genes contain similar 5' exon arrangements in which the 5' noncoding, signal peptide and casein kinase phosphorylation sequences are each encoded by separate exons. These findings support the hypothesis that during evolution, the family of casein genes arose by a process involving exon recruitment followed by intragenic and intergenic duplication of a primordial gene. Several highly conserved regions in the first 200 base pairs of the 5' flanking DNA have been identified. Additional sequence homology extending up to 550 base pairs upstream of the CAP site has been found between the rat alpha- and bovine alpha s1-casein sequences. Unexpectedly, the 5' flanking promoter regions are conserved to a greater extent than both the entire mature coding and intron regions of these genes. These conserved 5' flanking sequences may contain potential cis regulatory elements which are responsible for the coordinate expression of the functionally-related casein genes during mammary gland development.  相似文献   

18.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

19.
We have determined the nucleotide sequence of core histone genes and flanking regions from two of approximately 11 different genomic histone clusters of the nematode Caenorhabditis elegans. Four histone genes from one cluster (H3, H4, H2B, H2A) and two histone genes from another (H4 and H2A) were analyzed. The predicted amino acid sequences of the two H4 and H2A proteins from the two clusters are identical, whereas the nucleotide sequences of the genes have diverged 9% (H2A) and 12% (H4). Flanking sequences, which are mostly not similar, were compared to identify putative regulatory elements. A conserved sequence of 34 base-pairs is present 19 to 42 nucleotides 3' of the termination codon of all the genes. Within the conserved sequence is a 16-base dyad sequence homologous to the one typically found at the 3' end of histone genes from higher eukaryotes. The C. elegans core histone genes are organized as divergently transcribed pairs of H3-H4 and H2A-H2B and contain 5' conserved sequence elements in the shared spacer regions. One of the sequence elements, 5' CTCCNCCTNCCCACCNCANA 3', is located immediately upstream from the canonical TATA homology of each gene. Another sequence element, 5' CTGCGGGGACACATNT 3', is present in the spacer of each heterotypic pair. These two 5' conserved sequences are not present in the promoter region of histone genes from other organisms, where 5' conserved sequences are usually different for each histone class. They are also not found in non-histone genes of C. elegans. These putative regulatory sequences of C. elegans core histone genes are similar to the regulatory elements of both higher and lower eukaryotes. The coding regions of the genes and the 3' regulatory sequences are similar to those of higher eukaryotes, whereas the presence of common 5' sequence elements upstream from genes of different histone classes is similar to histone promoter elements in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号