首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two glycolipid transfer proteins that catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts have been isolated from calf brain. Purification procedures included differential centrifugation, precipitation at pH 5.1, ammonium sulfate precipitation, and gel filtration on Sephadex G-50 and G-75. The final stage employed fast protein liquid chromatography (Mono S), producing two peaks of activity. Apparent purity of the major peak (TP I) was approximately 85-90%, as judged by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis. That of the minor fraction (TP II) was less. The major band of both fractions had a molecular mass of approximately 20,000 daltons. Both proteins catalyzed the transfer of ganglioside GM1 as well as asialo-GM1, but transfer protein I was more effective with di- and trisialogangliosides. Transfer protein II appeared to be somewhat more specific for neutral glycolipids in that GA1 was transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer was relatively slow. Neither protein catalyzed transfer of phosphatidylcholine.  相似文献   

2.
Specific immune damage to liposomes containing Forssman or globoside glycolipid was inhibited when the liposomes also contained ganglioside. The activity of a human monoclonal Waldenstr?m macroglobulin antibody to Forssman glycolipid was inhibited by each of three gangliosides tested, GM3, GD1a and GD1b. Inhibition of the monoclonal antibody was dependent on the amount of ganglioside in the liposomes, and was diminished by reducing the relative amount of ganglioside. Inhibition also correlated positively with the number of ganglioside sialic acid groups, with inhibition by GT1b greater than GD1a greater than GM3. Naturally occurring human antibodies to globoside glycolipid were detected in 18% (9 out of 50) of normal human sera tested. Immune damage to liposomes induced by each of the three highest-reacting human anti-globoside sera was blocked by liposomal GM3. We conclude that gangliosides can strongly influence immune damage to membranes induced by antibody interactions with adjacent neutral glycolipids.  相似文献   

3.
The ganglioside-activator protein is an essential cofactor for the lysosomal degradation of ganglioside GM2 (GM2) by beta-hexosaminidase A. It mediates the interaction between the water-soluble exohydrolase and its membrane-embedded glycolipid substrate at the lipid-water interphase. Mutations in the gene encoding this glycoprotein result in a fatal neurological storage disorder, the AB variant of GM2-gangliosidosis. In order to efficiently and sensitively probe the glycolipid binding and membrane activity of this cofactor, we synthesized two new fluorescent glycosphingolipid (GSL) probes, 2-NBD-GM1 and 2-NBD-GM2. Both compounds were synthesized in a convergent and multistep synthesis starting from the respective gangliosides isolated from natural sources. The added functionality of 2-aminogangliosides allowed us to introduce the chromophore into the region between the polar head group and the hydrophobic anchor of the lipid. Both fluorescent glycolipids exhibited an extremely low off-rate in model membranes and displayed very efficient resonance energy transfer to rhodamine-dioleoyl phosphoglycerol ethanolamine (rhodamine-PE) as acceptor. The binding to GM2-activator protein (GM2AP) and the degrading enzyme was shown to be unaltered compared to their natural analogues. A novel fluorescence-resonance energy transfer (FRET) assay was developed to monitor in real time the protein-mediated intervesicular transfer of these lipids from donor to acceptor liposomes. The data obtained indicate that this rapid and robust system presented here should serve as a valuable tool to probe quantitatively and comprehensively the membrane activity of GM2AP and other sphingolipid activator proteins and facilitate further structure-function studies aimed at delineating independently the lipid- and the enzyme-binding mode of these essential cofactors.  相似文献   

4.
Previous studies indicated a reproducible pattern of altered glycosphingolipid biosynthesis accompanying late stages of liver tumorigenesis in the rat induced by the carcinogen 2-acetylaminofluorene. The sequence began with a dramatic elevation in CMP-sialic acid:lactosylceramide sialyltransferase and was followed by sequential elevations and eventual depressions in other enzymes catalyzing sugar transfers to glycolipid acceptors. The present study focused on the early events of glycolipid biosynthesis during the first 11 weeks of 2-acetylaminofluorene administration according to the same feeding schedule as used previously. Transient elevations in CMP-sialic acid synthetase and elevations in neutral glycosphingolipid precursors to gangliosides were found to precede the major elevations in CMP-sialic acid:lactosylceramide sialyltransferase (GM3 synthetase) noted earlier. Two cycles of response were observed prior to the initiation of the sustained enhancement of biosynthesis of precursor ganglioside, GM3, and/or a significant increase in total or lipid-soluble sialic acid. In vitro rates of sialyl transfer from CMP-sialic acid to endogenous protein acceptors were not altered. The results suggest that the previous observations of altered ganglioside biosynthesis following 2-acetylaminofluorene administration are not an isolated occurrence but may represent late events in a sequence or 'cascade' of biochemical change involving, as well, biosynthesis of ganglioside precursors, CMP-sialic acid and neutral glycosphingolipids.  相似文献   

5.
The transfer of phospholipids between two membrane substrates catalyzed by a soluble protein fraction from Rhodopseudomonas sphaeroides has been demonstrated. The assay employs purified intracytoplasmic membrane (ICM) vesicles derived from cells of R. sphaeroides grown on [3H]acetate as the phospholipid donor substrate and phosphatidylcholine (70%)/phosphatidylethanolamine (30%) unilamellar liposomes containing [14C]triolein, a nontransferable marker, as the acceptor substrate for transferred phospholipids. Incubation of these two membrane substrates with a 40 to 80% (NH4)2SO4 protein fraction from R. sphaeroides results in the transfer of tritium-labeled ICM phospholipids to the acceptor membrane substrate. Upon completion of the incubation period, the donor ICM vesicles are quantitatively separated from the acceptor liposomes by precipitation with antibody prepared against whole, purified ICM vesicles. Phospholipid transfer is linear with respect to time and protein concentration, is inhibited by trypsin and heat, and shows an absolute dependence upon the presence of acceptor liposomes and the 40 to 80% (NH4)2SO4 protein fraction. Control experiments indicate that no fusion of the donor and acceptor membrane occurs during the incubation period and that, following prolonged incubation there is no detectable degradation of the labeled lipid components. Preliminary data on the phospholipid specificity of the transfer reaction is also presented.  相似文献   

6.
A glycolipid-specific lipid transfer protein has been purified to apparent homogeneity from pig brain post-mitochondrial supernatant. The purified protein was obtained after about 6,000-fold purification at a yield of 19%. Evidence for the homogeneity of the purified protein includes the following: (i) a single band in acidic gel electrophoresis, in sodium dodecyl sulfate-gel electrophoresis, (ii) a single band in analytical gel isoelectric focusing, (iii) exact correspondence between the glycolipid transfer activity and stained protein absorbance in the acidic gel electrophoresis, and (iv) coincidence between the transfer activity and protein absorption at 280 nm in gel filtration through Ultrogel AcA 54. The protein has an isoelectric point of about 8.3 and a molecular weight of 22,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecular weight of 15,000 was calculated from AcA 54 gel filtration. The amino acid composition has been determined. The protein binds [3H]galactosylceramide but not [3H]phosphatidylcholine. Under the conditions used, 1 mol of the transfer protein bound about 0.13 mol of [3H]galactosylceramide. The glycolipid transfer protein-[3H]galactosylceramide complex was isolated by a Sephadex G-75 chromatography. An incubation of the complex with liposomes resulted in the transfer of [3H]galactosylceramide from the complex to the acceptor liposomes. The result indicates that the complex functions as an intermediate in the glycolipid transfer reaction. The protein facilitates the transfer of [3H]galactosylceramide from donor liposomes to acceptor liposomes lacking in glycolipid as well as to acceptor liposomes containing galactosylceramide.  相似文献   

7.
The lysosomal degradation of ganglioside GM2 by hexosaminidase A depends on the presence of the specific activator protein which mediates the interaction between micellar or membrane-bound ganglioside and water-soluble hydrolase. The mechanism and the glycolipid specificity of this activator were studied in more detail. 1. It could be shown with three different techniques (isoelectric focusing, centrifugation and electrophoresis) that the activator protein extracts glycolipid monomers from micelles or liposomes to give water-soluble complexes with a stoichiometry of 1 mol of glycolipid/mol of activator protein. Liposome-bound ganglioside GM2 is considerably more stable against extraction and degradation than micellar ganglioside. 2. In the absence of enzyme the activator acts in vitro as glycolipid transfer protein, transporting glycolipids from donor to acceptor membranes. 3. The activator protein is rather specific for ganglioside GM2. Other glycolipids (GM3 GM1, GD1a and GA2) form less stable complexes with the activator and are transferred at a slower rate (except for ganglioside GM1) than ganglioside GM2.  相似文献   

8.
Suzuki K  Okumura Y 《Biochemistry》2000,39(31):9477-9485
Exposure of cells to liposomes results in the release of integral membrane proteins. However, it is still controversial whether the release is due to spontaneous protein transfer from cells to liposomes or shed vesicles released from cells. We investigated this issue in an erythrocyte-liposome system by examining the location of acetylcholinesterase (AChE, an integral membrane protein marker), cholesterol (erythrocyte membrane lipid marker), hemoglobin (cytosolic protein marker), and a nonexchangeable lipid marker in liposomes in a sucrose density gradient at high resolution. The density distribution showed that AChE is not transferred to the liposomes but is located on small (about 50 nm) light (10-20 wt % sucrose) or large (about 200 nm) heavy shed vesicles (more than 30 wt % sucrose). AChE in the light shed-vesicle fraction markedly increased even after its level in the heavy fraction reached a plateau. AChE was also released from isolated heavy shed vesicles and accumulated in the small light shed-vesicle fraction in the presence of liposomes. After incubation of spherical erythrocytes (morphological index, 5.0) with liposomes, AChE hardly appeared in the heavy shed-vesicle fraction, and the majority (>99%) appeared in the light shed-vesicle fraction, indicating that AChE is released from both the erythrocytes and heavy shed vesicles to the light shed-vesicle fraction, which becomes rich in AChE. Our results demonstrated for the first time that GPI-linked proteins do not spontaneously transfer from erythrocytes to liposomes. Our study also suggests that in vivo GPI-linked membrane proteins do not spontaneously transfer between cell membranes but that some catalyst is needed.  相似文献   

9.
Synthesis of ganglioside GD1b from ganglioside GD2 was demonstrated using Golgi membranes isolated from rat liver. Competition experiments using gangliosides GA2, GM2 and GD2 as substrates, and as mutual inhibitors for ganglioside galactosyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that galactosyl transfer to these three compounds, leading to gangliosides GA1, GM1a and GD1b respectively, is catalyzed by one enzyme. These results strengthen the hypothesis that the main site for the regulation of ganglioside biosynthesis occurs within the reaction sequence LacCer----GA3----GD3----GT3.  相似文献   

10.
Properties of a specific glycolipid transfer protein from bovine brain   总被引:4,自引:0,他引:4  
A transfer protein specific for glycolipids has been isolated from bovine brain. As judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, the protein is 68% pure and has a molecular weight of 20 000. Three different assays were employed to study the protein's specificity and glycolipid binding properties. The protein transferred several different neutral glycosphingolipids and ganglioside GM1 equally well, but failed to accelerate phosphatidylcholine or sphingomyelin intervesicular movement. The protein's ability to interact with glycolipids was strongly influenced by the physical properties of the matrix phospholipid in which the glycolipids reside. Both the phase state of the phospholipid matrix and bilayer curvature affected glycolipid intervesicular transfer rates. Protein binding to phospholipid vesicles containing either tritium-labeled or pyrene-labeled glucosylceramide could not be demonstrated by density gradient centrifugation or fluorescence energy transfer measurements, respectively. A specific association of the transfer protein for pyrene-labeled glucosylceramide was found when the fluorescence emission of the pyrene excimer-to-monomer ratio was measured suggesting that a portion of the fluorescent glycolipid was being sequestered from the phospholipid vesicles and was binding to the freely soluble protein.  相似文献   

11.
Identity of GD1C, GT1a and GQ1b synthase in Golgi vesicles from rat liver   总被引:1,自引:0,他引:1  
H Iber  K Sandhoff 《FEBS letters》1989,254(1-2):124-128
Competition experiments using GM1b, GD1a and GT1b as substrates, and as mutual inhibitors for ganglioside sialyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that sialyl transfer to these three respective compounds, leading to gangliosides GD1C, GT1a and GQ1b, respectively, is catalyzed by one enzyme. These results are incorporated into a model for ganglioside biosynthesis and its regulation.  相似文献   

12.
Liposomes could bind and fuse efficiently to human erythrocytes in the presence of HVJ when they contained glycophorin isolated from human erythrocytes (Umeda, M., et al. (1983) J. Biochem. 94, 1955). In the present work we demonstrated that HVJ-induced fusion between liposomes containing glycophorin and erythrocytes was suppressed when GM1 coexisted with glycophorin in the same liposomal membranes. Asialo-GM1 and other gangliosides such as GM3 and sialosylparagloboside did not affect the fusion between the liposomes and erythrocytes. An intermolecular interaction between glycophorin and GM1 was suggested by the ESR spectrum obtained from liposomes containing glycophorin and a ganglioside GM1 analog carrying a nitroxyl spin label in the fatty acyl chains (5SL-gangliosidoide). The overall splitting value (2A parallel) observed in the ESR spectrum of liposomes containing 5SL-gangliosidoide increased with increase of the amount of glycophorin, whereas 2A parallel of spin-labeled phosphatidylcholine was not changed. The increase of 2A parallel of 5SL-gangliosidoide suggests that the mobility of the fatty acyl chain of the gangliosidoide was restricted by the interaction with glycophorin. It can be concluded that GM1 located near glycophorin, a receptor of the virus, interferes with the activity of viral F protein, inhibiting the fusion of liposome to erythrocyte.  相似文献   

13.
The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles (20-nm diameter) and large, unilamellar acceptor vesicles (70-nm diameter) were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. When viewed within the context of other recent studies involving neutral glycosphingolipids, these findings provide additional evidence for the existence of microscopic, glycosphingolipid-enriched domains within the phospholipid bilayer.  相似文献   

14.
Glycosphingolipid specificity of the human sulfatide activator protein   总被引:1,自引:0,他引:1  
The interaction of the sulfatide activator protein with different glycosphingolipids have been studied in detail. The following findings were made. 1. The sulfatide activator protein forms water-soluble complexes with sulfatides [Fischer, G. and Jatzkewitz, H. (1977) Hoppe-Seyler's Z. Physiol. Chem. 356, 6588-6591] and various other glycospingolipids. 2. In the absence of degrading enzymes the activator protein acts in vitro as a glycosphingolipid transfer protein, transporting glycosphingolipids from donor to acceptor liposomes. Lipids having less than three hexoses, e.g. galactosylceramide, sulfatide and ganglioside GM3 were transferred at very slow rates, whereas complex lipids such as gangliosides GM2, GM1 and GD1a were transferred much faster than the former. The transfer rate increased with increasing length of the carbohydrate chain of the lipid molecules. 3. Both the acyl residue in the ceramide moiety and the nature of the carbohydrate chain are significant for recognition of the glycosphingolipids by the sulfatide activator protein. Apparently, both residues serve as an anchor and the longer they are the better they are recognized by the protein. 4. In the absence of activator protein, degradation rates of sulfatide derivatives by arylsulfatase A, and of ganglioside GM1 derivatives by beta-galactosidase, increase with decreasing length of acyl residues in their hydrophobic ceramide moiety. Addition of activator protein stimulates the degradation of only those GM1 and sulfatide derivatives that have long-chain fatty acids in their hydrophobic ceramide anchor.  相似文献   

15.
Incorporation of dioleoyl N-(monomethoxy polyethyleneglycol succinyl)phosphatidylethanolamine (PEG-PE) into large unilamellar liposomes composed of egg phosphatidylcholine:cholesterol (1:1) does not significantly increase the content leakage when the liposomes are exposed to 90% human serum at 37 degrees C, yet the liposomes show a significant increase in the blood circulation half-life (t1/2 = 5 h) as compared to those without PEG-PE(t1/2 less than 30 min). The PEG-PE's activity to prolong the circulation time of liposomes is greater than that of the ganglioside GM1, a well-described glycolipid with this activity. Another amphipathic PEG derivative, PEG stearate, also prolongs the liposome circulation time, although its activity is less than that of GM1. Amphipathic PEGs may be useful for the sustained release and the targeted drug delivery by liposomes.  相似文献   

16.
The uptake of ganglioside analogues by a permanent mouse fibroblast cell line has been studied by radio-tracer techniques and ESR spectroscopy with 3H- and nitroxide-labeled compounds. Analogues of GM1, GM2, and GM3 monosialogangliosides and of GD1a and GD3 disialogangliosides were synthesized. The spin-label group was situated on the 5-, 9-, or 13-carbon atom of the C18 fatty acid chain, and the 3H label was in the carbohydrate moiety. Part of the ganglioside associated with the cells could be removed by trypsin treatment and was shown to consist of ganglioside micelles attached to the cell surface. The trypsin-resistant component displayed characteristic anisotropic ESR spectra which closely resembled those of the same spin-labeled analogues at low dilution in liposomes prepared from the extracted cell lipids. The flexibility gradient, polarity profile, and temperature dependence displayed by the spectra were similar to those found for fluid phospholipid bilayer model membranes, and the high effective order parameters suggested a location in the cell plasma membrane. Similar results were obtained for all the different ganglioside analogues, indicating a common anchoring region in the hydrophobic interior of the membrane. Under the incubation conditions used the amount of trypsin-resistant ganglioside analogue taken up by the cells was about 15 nmol/mg of cellular protein, irrespective of the nature of the oligosaccharide moiety. By use of the natural ganglioside [3H]GM3, the trypsin-resistant uptake was about 19 nmol/mg of cellular protein. Although these amounts are quite similar, the uptake kinetics differed between the true ganglioside GM3 and the ganglioside analogues.  相似文献   

17.
Phosphatidylinositol exchange protein, purified from bovine cerebral cortex, catalyzes the transfer of phosphatidylinositol and, to a lesser extent, phosphatidylcholine between rat liver microsomes and egg phosphatidylcholine liposomes. Transfer activity is sensitive to pH, temperature, and the method of liposome preparation. Variation of the phospholipid composition of the liposomes produces vesicles for which the apparent Michaelis constant decreases with increasing molar proportions of phosphatidylinositol. Interaction of exchange protein with liposomes containing radioactively labeled phosphatidylcholine allows the isolation of a phospholipid-protein complex; dissociation of this complex occurs upon subsequent interaction with unlabeled liposomes. Changes in the concentration of the two membrane species, microsomes and liposomes, yield results which are interpreted in terms of a ping-pong kinetic mechanism for the protein-catalyzed, intermembrane transfer of phospholipids.  相似文献   

18.
The specificity of Campylobacter pylori cell surface lectin, a presumptive colonization factor, was investigated using various sulfated and sialic acid containing glycolipids. C. pylori cells, cultured from human antral mucosal biopsies, were incubated with intact and modified glycolipid preparations and examined for agglutination inhibition of human erythrocytes. Titration data revealed that the inhibitory activity was highest with lactosylceramide sulfate and GM3 ganglioside, while galactosylceramide sulfate GM1, GD1a and GD1b gangliosides were less effective. A strong inhibitory activity towards C. pylori hemagglutin was also observed with an antiulcer agent, sucralfate. The inhibitory effect of both types of glycolipids was abolished by the removal of sialic acid and sulfate ester groups, thus indicating that sulfated and sialic acid containing glycolipids with terminal lactosyl moieties serve as mucosal receptors for colonization of gastric epithelium by C. pylori.  相似文献   

19.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

20.
The ability of the glycolipid photoprobe, 12-(4-azido-2-nitrophenoxy)-stearoyl[1-14C]glucosamine (12-APS-GlcN), to undergo transbilayer flip-flop and intermembrane transfer between liposomes was examined. It was found that probe which was incorporated into membranes during the preparation of large unilamellar vesicles (LUVs) could be rapidly and completely extracted by incubation of these donor vesicles (in the liquid-crystalline state) with probe-free acceptor vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号