首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous (mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures to overwinter. At the onset of the breeding season in the following spring, we found that offspring of polyandrous females performed significantly better at reproduction than those of monandrous females. This was mainly due to sons of polyandrous females producing significantly more offspring than those of monandrous females. No significant differences were found for offspring body mass or winter survival between the two treatments. Our results appear to provide evidence that bank vole females gain long-term benefits from polyandry.  相似文献   

2.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

3.
Engqvist  Leif 《Behavioral ecology》2006,17(3):435-440
The adaptive significance of female polyandry has become a recurrentsubject of recent theoretical and empirical research. It hasbeen argued that in addition to direct benefits, such as nuptialgifts or an adequate sperm supply, females may gain geneticbenefits from mating with different males. Females of the scorpionflyPanorpa cognata mate with several males during their lifetime.In an experiment designed to rule out any direct nutritionalbenefit of multiple matings, I found that polyandrous femalesthat mated with two different males achieved a significantlyhigher egg-hatching success than monandrous females that matedtwice with the same male. However, individual males did nottrigger the same response in different females as the egg-hatchingsuccess of different females that mated with one and same maledid not correlate. The results, thus, do not conform to predictionsfrom hypotheses assuming that genetic benefits of polyandryare influenced by the intrinsic genetic quality of males. Theresults are, however, consistent with the genetic incompatibilityhypothesis. Nevertheless, substances from different males transferredduring copulation may synergistically affect zygote viability.Furthermore, I discuss why paternity studies can only explicitlytest the genetic incompatibility hypothesis if there are a prioriexpectations of female-male genome compatibilities.  相似文献   

4.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

5.
Female promiscuity has broad implications for individual behaviour, population genetics and even speciation. In the field cricket Gryllus bimaculatus, females will mate with almost any male presented to them, despite receiving no recorded direct benefits. Previous studies have shown that female crickets can benefit from polyandry through increased hatching success of their eggs. There is evidence that this effect is driven by the potential of polyandrous females to avoid fertilizing eggs with sperm from genetically incompatible males. We provide direct evidence supporting the hypothesis that polyandry is a mechanism to avoid genetic incompatibilities resulting from inbreeding. Using microsatellite markers we examined patterns of paternity in an experiment where each female mated with both a related and an unrelated male in either order. Overall, unrelated males were more successful in gaining paternity than were related males, but this effect was driven by a much greater success of unrelated males when they were the first to mate.  相似文献   

6.
Genetic benefits from mating with multiple males are thought to favour the evolution of polyandry. However, recent evidence suggests that non-genetic paternal effects via seminal fluid might contribute to the observed effects of polyandry on offspring performance. Here, we test this hypothesis using the field cricket Teleogryllus oceanicus. Using interference RNA, we first show that at least one seminal fluid protein is essential for embryo survival. We then show that polyandrous females mated to three different males produced embryos with higher pre-hatching viability than did monandrous females mated with the same male three times. Pseudo-polyandrous females that obtained sperm and seminal fluid from a single male and seminal fluid from two additional males had embryos with viabilities intermediate between monandrous and polyandrous females. Our results suggest either that ejaculate mediated paternal effects on embryo viability have both genetic and non-genetic components, or that seminal fluids transferred by castrated males provide only a subset of proteins contained within the normal ejaculate, and are unable to exert their full effect on embryo viability.  相似文献   

7.
I have examined the adaptive significance of polyandry using the Australian field cricket Teleogryllus oceanicus. Previous studies of polyandry have examined differences in offspring production by females mated multiply to a single male or females mated multiply to different males. Here I combine this approach with a study of parentage of offspring produced in the later group. Females mated to two different males had a higher proportion of their eggs hatching than did females mating twice with a single male. Offspring fitness parameters were not effected. There was little evidence to suggest that females elevate their hatching success via fertilizing their eggs with sperm from genetically compatible males. Although the average paternity points towards random sperm mixing, there was considerable individual variation in sperm competition success. Patterns of parentage were consistent across females mating twice or four times. Sperm competition success was not related to offspring viability or performance. Thus, the notion that competitively superior sperm produce competitively superior offspring is not supported either. The mechanism underlying increased hatching success with polyandry requires further study.  相似文献   

8.
Several studies suggest that polyandrous females bias paternity in favor of unrelated males to avoid inbreeding depression. Here we tested whether the migratory locust biases sperm usage toward unrelated males by analyzing the paternity of offspring from females mated with either two siblings, or two nonsiblings, or a sibling and a nonsibling in either order. We found that the eggs of females mated only with siblings had decreased hatching success. When females mated with both a nonsibling and a sibling, egg hatchability was significantly increased. Subsequent paternity analyses found no evidence that females could avoid fertilization by sibling males. Therefore, improvement of the hatchability of eggs sired by siblings suggests that rather than biased fertilization by females toward genetically compatible or superior males, male-induced maternal effects or direct effects of male ejaculates might influence the survival of offspring sired by related males.  相似文献   

9.
While the immediate benefits accrued to females through multiple mating are well documented, the effect of sperm depletion for multiply mating males is rarely considered. We show that, in small mixed-sex laboratory aggregations, both male and female hide beetles, Dermestes maculatus (De Geer) mated multiply. There was considerable variation in the mating frequency of both sexes; however the skew in mating success was comparable for males and females. Several individuals that mated multiply also re-mated with a previous partner, but in a competitive environment no male copulated more than seven times. Mating success was unrelated to an individual's size, but males that had the most inter-sexual matings also engaged in the most intra-sexual mating attempts. In a second experiment, we show that, even in the absence of rivals, only a small number of males mated with all available virgin females. Moreover, even though males were mated twice to each female, males that copulated more than eight times failed to fertilize any eggs. We suggest that under natural conditions male hide beetles may refrain from mating either prior to, or at the point of, sperm depletion thereby reducing the selection pressure for females to discriminate against sperm depleted males. However, fecundity and fertilization success varied considerably across females and even those mating with sperm-replete males were unable to fertilize 100% of their egg batch. Thus, direct fertilization benefits accrued by females through mating more than once with the same male may play a key role in the maintenance of polyandry in this species.  相似文献   

10.
Male parental care and female multiple mating are seen in many species in spite of the cost they entail. Moreover, they even coexist in some species though polyandry, by reducing paternity confidence of caregiving males, seems to hinder the evolution of paternal care. Previous studies have investigated the coevolutionary process of paternal care and polyandry under various simplifying assumptions, including random mating and random provision of male care. We extend these models to examine possible effects of female mate choice and male care bias, assuming that (a) monandrous females mate preferentially with caregiving males while polyandrous females compromise their preference in order to mate with multiple males and (b) caregiving males tend to direct their care to offspring of monandrous females. Our models suggest that both the female preference and the male bias always favor caregiving males while they may not always facilitate the evolution of monandry.  相似文献   

11.
Some of the genetic benefit hypotheses put forward to explain multiple male mating (polyandry) predict that sons of polyandrous females will have an increased competitive ability under precopulatory or post‐copulatory competition via paternally inherited traits, such as attractiveness or fertilization efficiency. Here, we tested these predictions by comparing the competitive ability of sons of experimentally monandrous and polyandrous female bank voles (Myodes glareolus), while controlling for potential material and maternal effects. In female choice experiments, we found no clear preference for sons of either monandrous or polyandrous mothers. Moreover, neither male type was dominant over the other, indicating no advantage in precopulatory male contest competition. However, in competitive matings, sons of polyandrous mothers significantly increased their mating efforts (mating duration, intromission number). In line with this, paternity success was biased towards sons of polyandrous mothers. Because there was no evidence for maternal effects, our results suggest that female bank voles gain genetic benefits from polyandry.  相似文献   

12.
The maintenance of female polyandry has traditionally been attributed to the material (direct) benefits derived from male mating resources (e.g. nuptial gifts) accrued by multiple mating. However, genetic (indirect) benefits offer a more robust explanation since only polyandrous, not monandrous, females may gain both material benefits from multiple mating and genetic benefits from multiple sires. Discriminating between material and genetic benefits is essential when addressing the mechanism by which polyandry is adaptively maintained, but are difficult to disentangle because they affect fitness in similar ways. To test the hypothesis that genetic benefits maintain polyandry, we compared four components of fitness (longevity, fecundity, hatching success and survivorship) between monandrous and polyandrous females in the ground cricket, Allonemobius socius. We discovered that females derived nongenetic benefits from mating multiply, in that the magnitude of the nuptial gift was positively associated with the number of eggs produced. However, polyandrous females had over a two-fold greater hatching success and a 43% greater offspring survivorship, leading to a significantly higher relative fitness than the monandrous strategy. These results were independent of the confounding effects of material benefits, implying that genetic contributions play a large role in the maintenance of polyandry and potentially in the antagonistic coevolutionary relationship between polyandry and male nuptial gifts. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

13.
A potential benefit to females mating with multiple males is the increased probability that their sons will inherit traits enhancing their pre‐ or post‐mating ability to obtain fertilizations. We allowed red flour beetle (Tribolium castaneum) females to mate on three consecutive days either repeatedly to the same male or to three different males. This procedure was carried out in 20 replicate lines, 10 established with wild‐type, and 10 with the Chicago black morph, a partially dominant phenotypic marker. The paternity achieved by the sons of females from polyandrous vs. monandrous lines of contrasting morph was assessed in the F1, F2 and F3 generation by mating wild‐type stock females to two experimental males and assigning the progeny to either sire based on phenotype. The sons of polyandrous wild‐type females achieved significantly higher paternity when mating in the second male role than the sons of monandrous wild‐type females. By contrast, when mating in the first male role, males produced by females from polyandrous lines tended to have lower paternity than males from monandrous lines. Both effects were independent of the number of mates of the black competitor’s mother, and interacted significantly with the number of progeny laid by the female. These results provide the first evidence that manipulating the number of mates of a female can influence her sons’ mating success and suggest a potential trade‐off between offence and defence in this species.  相似文献   

14.
A challenge in evolutionary biology is to understand the operation of sexual selection on males in polyandrous groups, where sexual selection occurs before and after mating. Here, we combine fine‐grained behavioral information (>41,000 interactions) with molecular parentage data to study sexual selection in replicated, age‐structured groups of polyandrous red junglefowl, Gallus gallus. Male reproductive success was determined by the number of females mated (precopulatory sexual selection) and his paternity share, which was driven by the polyandry of his female partners (postcopulatory sexual selection). Pre‐ and postcopulatory components of male reproductive success covaried positively; males with high mating success also had high paternity share. Two male phenotypes affected male pre‐ and postcopulatory performance: average aggressiveness toward rival males and age. Aggressive males mated with more females and more often with individual females, resulting in higher sexual exclusivity. Similarly, younger males mated with more females and more often with individual females, suffering less intense sperm competition than older males. Older males had a lower paternity share even allowing for their limited sexual exclusivity, indicating they may produce less competitive ejaculates. These results show that—in these populations—postcopulatory sexual selection reinforces precopulatory sexual selection, consistently promoting younger and more aggressive males.  相似文献   

15.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

16.
Monandry and polyandry as alternative lifestyles in a butterfly   总被引:10,自引:3,他引:7  
Butterflies show considerable variability in female mating frequency, ranging from monandrous species to females mating several timesin their lifetime. Degree of polyandry also varies within species,with some females only mating once and others mating multiply.Previous studies have shown that one reason for female multiplemating is to obtain nutritious male donations that both increasethe longevity of females and result in higher lifetime fecundity.Despite the presence of male nutrient donations, some femalesof the green-veined white butterfly (Pieridae: Pieris napi)never mate more than once. In this study, we examined thisapparent paradox. We assessed to what degree polyandry is undergenetic control by a full-sib analysis, and we also estimatedthe broad sense heritability of female lifetime fecundity in singly mated females. Both polyandry and lifetime fecundityhave a genetic component. However, degree of polyandry appearsto be traded off against reduced longevity when denied theopportunity to mate more than once. It is possible that femaleP. napi display different reproductive strategies, with somefemales relying on male donations to realize their potentialfecundity and others relying on their own resources for egg production. In nature, polyandrous females may be preventedfrom mating multiply due to unfavorable weather. We discussthe possibility that the trade-off between degree of polyandryand life span when singly mated may affect the maintenanceof genetic variability in female mating frequency in this species.Possible reasons for these different reproductive strategiesare discussed.  相似文献   

17.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

18.
This study examined whether polyandrous female Chinook salmon Oncorhynchus tshawytscha obtain benefits compared with monandrous females through an increase in hatching success. Both of the alternative reproductive tactics present in male O. tshawytscha (large hooknoses and small, precocious jacks) were used, such that eggs were either fertilized by a single male (from each tactic) or multiple males (using two males from the same or different tactics). The results show that fertilized eggs from the polyandrous treatments had a significantly higher hatching success than those from the monandrous treatments. It is also shown that sperm speed was positively related with offspring hatching success. Finally, there were tactic‐specific effects on the benefits females received. The inclusion of jacks in any cross resulted in offspring with higher hatching success, with the cross that involved a male from each tactic providing offspring with the highest hatching success than any other cross. This study has important implications for the evolution of multiple mating and why it is so prevalent across taxa, while also providing knowledge on the evolution of mating systems, specifically those with alternative reproductive tactics.  相似文献   

19.
Mating system variation is profound in animals. In insects, female willingness to remate varies from mating with hundreds of males (extreme polyandry) to never remating (monandry). This variation in female behaviour is predicted to affect the pattern of selection on males, with intense pre-copulatory sexual selection under monandry compared to a mix of pre- and post-copulatory forces affecting fitness under polyandry. We tested the hypothesis that differences in female mating biology would be reflected in different costs of pre-copulatory competition between males. We observed that exposure to rival males early in life was highly costly for males of a monandrous species, but had lower costs in the polyandrous species. Males from the monandrous species housed with competitors showed reduced ability to obtain a mate and decreased longevity. These effects were specific to exposure to rivals compared with other types of social interactions (heterospecific male and mated female) and were either absent or weaker in males of the polyandrous species. We conclude that males in monandrous species suffer severe physiological costs from interactions with rivals and note the significance of male–male interactions as a source of stress in laboratory culture.  相似文献   

20.
The genetic incompatibility avoidance hypothesis as an explanation for the polyandrous mating strategies (mating with more than one male) of females of many species has received significant attention in recent years. It has received support from both empirical studies and a meta-analysis, which concludes that polyandrous females enjoy increased reproductive success through improved offspring viability relative to monandrous females. In this study we investigate whether polyandrous female Drosophila simulans improve their fitness relative to monandrous females in the face of severe Wolbachia-associated reproductive incompatibilities. We use the results of this study to develop models that test the predictions that Wolbachia should promote polyandry, and that polyandry itself may constrain the spread of Wolbachia. Uniquely, our models allow biologically relevant rates of incompatibility to coevolve with a polyandry modifier allele, which allows us to evaluate the fate of the modifier and that of Wolbachia. Our empirical results reveal that polyandrous females significantly reduce the reproductive costs of Wolbachia, owing to infected males being poor sperm competitors. The models show that this disadvantage in sperm competition can inhibit or prevent the invasion of Wolbachia. However, despite the increased reproductive success obtained by polyandrous females, the spread of a polyandry modifier allele is constrained by any costs that might be associated with polyandry and the low frequency of incompatible matings when Wolbachia has reached a stable equilibrium. Therefore, although incompatibility avoidance may be a benefit of polyandry, our findings do not support the hypothesis that genetic incompatibilities caused by Wolbachia promote the evolution of polyandry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号