首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noguchi T  Sugiura M 《Biochemistry》2003,42(20):6035-6042
Protein bands in flash-induced Fourier transform infrared (FTIR) difference spectra of the S-state cycle of photosynthetic water oxidation were analyzed by uniform (15)N and (13)C isotopic labeling of photosystem II (PS II). The difference spectra upon first- to fourth-flash illumination were obtained with hydrated (for the 1800-1200 cm(-)(1) region) or deuterated (for the 3500-3100 cm(-)(1) region) films of unlabeled, (15)N-labeled, and (13)C-labeled PS II core complexes from Thermosynechococcus elongatus. Shifts of band frequencies upon (15)N and (13)C labeling provided the assignments of major peaks in the regions of 3450-3250 and 1700-1630 cm(-)(1) to the NH stretches and amide I modes of polypeptide backbones, respectively, and the assignments of some of the peaks in the 1600-1500 cm(-)(1) region to the amide II modes of backbones. Other prominent peaks in the latter region and most of the peaks in the 1450-1300 cm(-)(1) region exhibited large downshifts upon (13)C labeling but were unchanged by (15)N labeling, and hence assigned to the asymmetric and symmetric COO(-) stretching vibrations, respectively, of carboxylate groups in Glu, Asp, or the C-terminus. Peak positions corresponded well with each other among the first- to fourth-flash spectra, and most of the bands in the first- and/or second-flash spectra appeared with opposite signs of intensity in the third- and/or fourth-flash spectra. This observation indicates that the protein movements in the S(1)-->S(2) and/or S(2)-->S(3) transitions are mostly reversed in the S(3)-->S(0) and/or S(0)-->S(1) transitions, representing a catalytic role of the protein moieties of the water-oxidizing complex. Drastic structural changes in carboxylate groups over the S-state cycle suggest that the Asp and/or Glu side chains play important roles in the reaction mechanism of photosynthetic water oxidation.  相似文献   

2.
Suzuki H  Sugiura M  Noguchi T 《Biochemistry》2008,47(42):11024-11030
Photosynthetic water oxidation takes place in the water-oxidizing center (WOC) of photosystem II (PSII). To clarify the mechanism of water oxidation, detecting water molecules in the WOC and monitoring their reactions at the molecular level are essential. In this study, we have for the first time detected the DOD bending vibrations of functional D 2O molecules during the S-state cycle of the WOC by means of Fourier transform infrared (FTIR) difference spectroscopy. Flash-induced FTIR difference spectra upon S-state transitions were measured using the PSII core complexes from Thermosynechococcus elongatus moderately deuterated with D 2 (16)O and D 2 (18)O. D 2 (16)O-minus-D 2 (18)O double difference spectra at individual S-state transitions exhibited six to eight peaks arising from the D (16)OD/D (18)OD bending vibrations in the 1250-1150 cm (-1) region. This observation indicates that at least two water molecules, not in any deprotonated forms, participate in the reaction at each S-state transition throughout the cycle. Most of the peaks exhibited clear counter peaks with opposite signs at different transitions, reflecting a series of reactions of water molecules at the catalytic site. In contrast, negative bands at approximately 1240 cm (-1) in the S 2 --> S 3, S 3 --> S 0, and possibly S 0 --> S 1 transitions, for which no clear counter peaks were found in other transitions, can be interpreted as insertion of substrate water into the WOC from a water cluster in the proteins. The characteristics of the weakly D-bonded OD stretching bands were consistent with the insertion of substrate from internal water molecules in the S 2 --> S 3 and S 3 --> S 0 transitions. The results of this study show that FTIR detection of the DOD bending vibrations is a powerful method for investigating the molecular mechanism of photosynthetic water oxidation as well as other enzymatic reactions involving functional water molecules.  相似文献   

3.
Kimura Y  Mizusawa N  Ishii A  Ono TA 《Biochemistry》2005,44(49):16072-16078
Changes in structural coupling between the Mn cluster and a putative histidine ligand during the S-state cycling of the oxygen-evolving complex (OEC) have been detected directly by Fourier transform infrared (FTIR) spectroscopy in photosystem (PS) II core particles from the cyanobacterium Synechocystis sp. PCC6803, in which histidine residues were selectively labeled with l-[(15)N(3)]histidine. The bands sensitive to the histidine-specific isotope labeling appeared at 1120-1090 cm(-)(1) in the spectra induced upon the first-, second-, and fourth-flash illumination, for the S(2)/S(1), S(3)/S(2), and S(1)/S(0) differences, at similar frequencies with different sign and/or intensity depending on the respective S-state transitions. However, no distinctive band was observed in the third-flash induced spectrum for the S(0)/S(3) difference. The results indicate that a single histidine residue coupled with the structural changes of the OEC during the S-state cycling is responsible for the observed histidine bands, in which the histidine modes changed during the S(0)-to-S(1) transition are reversed upon the S(1)-to-S(2) and S(2)-to-S(3) transitions. The 1186(+)/1178(-) cm(-)(1) bands affected by l-[(15)N(3)]histidine labeling were observed only for the S(2)/S(1) difference, but those affected by universal (15)N labeling appeared prominently showing a clear S-state dependency. Possible origins of these bands and changes in the histidine modes during the S-state cycling are discussed.  相似文献   

4.
Flash-induced Fourier transform infrared (FTIR) difference spectroscopy has been used to study the water-oxidizing reactions in the oxygen-evolving centre of photosystem II. Reactions of water molecules were directly monitored by detecting the OH stretching bands of weakly H-bonded OH of water in the 3700-3500 cm(-1) region in FTIR difference spectra during S-state cycling. In the S1-->S2 transition, a band shift from 3588 to 3617 cm(-1) was observed, indicative of a weakened H-bond. Decoupling experiments using D2O:H2O (1:1) showed that this OH arose from a water molecule with an asymmetric H-bonding structure and this asymmetry became more significant upon S2 formation. In the S2-->S3, S3-->S0 and S0-->S1 transitions, negative bands were observed at 3634, 3621 and 3612 cm(-1), respectively, representing formation of a strong H-bond or a proton release reaction. In addition, using complex spectral features in the carboxylate stretching region (1600-1300 cm-(1)) as 'fingerprints' of individual S-state transitions, pH dependency of the transition efficiencies and the effect of dehydration were examined to obtain the information of proton release and water insertion steps in the S-state cycle. Low-pH inhibition of the S2-->S3, S3-->S0 and S0-->S1 transitions was consistent with a view that protons are released in the three transitions other than S1-->S2, while relatively high susceptibility to dehydration in the S2-->S3 and S3-->S0 transitions suggested the insertion of substrate water into the system during these transitions. Thus, a possible mechanism of water oxidation to explain the FTIR data is proposed.  相似文献   

5.
Noguchi T  Sugiura M 《Biochemistry》2001,40(6):1497-1502
Fourier transform infrared (FTIR) difference spectra of all flash-induced S-state transitions of the oxygen-evolving complex were measured using photosystem II (PSII) core complexes of Synechococcus elongatus. The PSII core sample was given eight successive flashes with 1 s intervals at 10 degrees C, and FTIR difference spectra upon individual flashes were measured. The obtained difference spectra upon the first to fourth flashes showed considerably different spectral features from each other, whereas the fifth, sixth, seventh, and eighth flash spectra were similar to the first, second, third, and fourth flash spectra, respectively. The intensities at the wavenumbers of prominent peaks of the first and second flash spectra showed clear period four oscillation patterns. These oscillation patterns were well fitted with the Kok model with 13% misses. These results indicate that the first, second, third, and fourth flash spectra represent the difference spectra upon the S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1) transitions, respectively. In these spectra, prominent bands were observed in the symmetric (1300-1450 cm(-)(1)) and asymmetric (1500-1600 cm(-)(1)) stretching regions of carboxylate groups and in the amide I region (1600-1700 cm(-)(1)). Comparison of the band features suggests that the drastic coordination changes of carboxylate groups and the protein conformational changes in the S(1) --> S(2) and S(2) --> S(3) transitions are reversed in the S(3) --> S(0) and S(0) --> S(1) transitions. The flash-induced FTIR measurements during the S-state cycle will be a promising method to investigate the detailed molecular mechanism of photosynthetic oxygen evolution.  相似文献   

6.
Noguchi T  Sugiura M 《Biochemistry》2002,41(7):2322-2330
Differently hydrated films of photosystem II (PSII) core complexes from Synechococcus elongatus were prepared in a humidity-controlled infrared cell. The relative humidity was changed by a simple method of placing a different ratio of glycerol/water solution in the sealed cell. The extent of hydration of the PSII film was lowered as the glycerol ratio increased. FTIR difference spectra of the water oxidizing complex upon the first to sixth flashes were measured at 10 degrees C using these hydrated PSII films. The FTIR spectra (1800-1200 cm(-1)) of the PSII films hydrated using 20% and 40% glycerol/water showed basically the same features as those of the core sample in solution [Noguchi, T., and Sugiura, M. (2001) Biochemistry 40, 1497-1502], and the prominent peaks exhibited clear period four oscillation patterns. These observations indicate that the S-state cycle properly functions in these hydrated samples. In the PSII films less hydrated, however, the efficiencies of S-state transitions decreased as the extent of hydration was lowered. This tendency was more significant in the S2 --> S3 and S3 --> S0 transitions than in the S1 --> S2 and S0 --> S1 transitions, indicating that the reactions or movements of water molecules are more strongly coupled with the former two transitions than the latter two. The implication of this observation was discussed in light of the water oxidizing mechanism especially in respect to the steps of substrate incorporation and proton release. Furthermore, in the OH stretching region (3800-3000 cm(-1)) of the first-flash spectrum, a differential signal was observed at 3618/3585 cm(-1), which was previously found in the S2/S1 spectrum of a frozen sample at 250 K and assigned to the water vibrations [Noguchi, T., and Sugiura, M. (2000) Biochemistry 39, 10943-10949]. The fact that the signal appeared even in rather dehydrated PSII films at a physiological temperature (10 degrees C) supported the idea that this water is located in the close vicinity of the Mn cluster and directly involved in the water oxidizing reaction. The results also showed that moderate hydration of the PSII sample made the whole OH region measurable, escaping from absorption saturation by bulk water, and thus will be a useful technique to monitor the water reactions during the S-state cycle using FTIR spectroscopy.  相似文献   

7.
Yamanari T  Kimura Y  Mizusawa N  Ishii A  Ono TA 《Biochemistry》2004,43(23):7479-7490
Flash-induced Fourier transform infrared (FTIR) difference spectra for the four-step S-state cycle and the effects of global (15)N- and (13)C-isotope labeling on the difference spectra were examined for the first time in the mid- to low-frequency (1200-800 cm(-1)) as well as the mid-frequency (1700-1200 cm(-1)) regions using photosystem (PS) II core particles from cyanobacterium Synechocystis sp. PCC 6803. The difference spectra clearly exhibited the characteristic vibrational features for each transition during the S-state cycling. It is likely that the bands that change their sign and intensity with the S-state advances reflect the changes of the amino acid residues and protein matrices that have functional and/or structural roles within the oxygen-evolving complex (OEC). Except for some minor differences, the trends of S-state dependence in the 1700-1200 cm(-1) frequency spectra of the PS II cores from Synechocystis were comparable to that of spinach, indicating that the structural changes of the polypeptide backbones and amino acid side chains that occur during the oxygen evolution are inherently identical between cyanobacteria and higher plants. Upon (13)C-labeling, most of the bands, including amide I and II modes and carboxylate stretching modes, showed downward shifts; in contrast, (15)N-labeling induced isotopic shifts that were predominantly observed in the amide II region. In the mid- to low-frequency region, several bands in the 1200-1140 cm(-1) region were attributable to the nitrogen- and/or carbon-containing group(s) that are closely related to the oxygen evolution process. Specifically, the putative histidine ligand exhibited a band at 1113 cm(-1) which was affected by both (15)N- and (13)C-labeling and showed distinct S-state dependency. The light-induced bands in the 900-800 cm(-1) region were downshifted only by (13)C-labeling, whereas the bands in the 1000-900 cm(-1) region were affected by both (15)N- and (13)C-labeling. Several modes in the mid- to low-frequency spectra were induced by the change in protonation state of the buffer molecules accompanied by S-state transitions. Our studies on the light-induced spectrum showed that contributions from the redox changes of Q(A) and the non-heme iron at the acceptor side and Y(D) were minimal. It was, therefore, suggested that the observed bands in the 1000-800 cm(-1) region include the modes of the amino acid side chains that are coupled to the oxidation of the Mn cluster. S-state-dependent changes were observed in some of the bands.  相似文献   

8.
Noguchi T  Sugiura M 《Biochemistry》2000,39(36):10943-10949
The vibrations of a water molecule in the water-oxidizing complex (WOC) of photosystem II were detected for the first time using Fourier transform infrared (FTIR) spectroscopy. In a flash-induced FTIR difference spectrum upon the S(1)-to-S(2) transition, a pair of positive and negative bands was observed at 3618 and 3585 cm(-1), respectively, and both bands exhibited downshifts by 12 cm(-1) upon replacement of H(2)(16)O by H(2)(18)O. Upon D(2)O substitution, the bands largely shifted down to 2681 and 2652 cm(-1). These observations indicate that the bands at 3618 and 3585 cm(-1) arise from the O-H stretching vibrations of a water molecule, probably substrate water, coupled to the Mn cluster in the S(2) and S(1) states, respectively. The band frequencies indicate that the O-H group forms a weak H-bond and this H-bonding becomes weaker upon S(2) formation. Intramolecular coupling with the other O-H vibration of this water molecule was studied by a decoupling experiment using a H(2)O/D(2)O (1:1) mixture. The downshifts by decoupling were estimated to be 4 and 12 cm(-1) for the 3618 (S(2)) and 3585 cm(-1) (S(1)) bands, both of which were much smaller than 52 cm(-1) of water in vapor, indicating that the observed water has a considerably asymmetric structure; i.e., one of the O-H groups is weakly and the other is strongly H-bonded. The smaller coupling in the S(2) than the S(1) state means that this H-bonding asymmetry becomes more prominent upon S(2) formation. Such a structural change may facilitate the proton release reaction that takes place in the later step by lowering the potential barrier. The present study showed that FTIR detection of the O-H vibrations is a useful and promising method to directly monitor the chemical reactions of substrate water and clarify the molecular mechanism of photosynthetic water oxidation.  相似文献   

9.
The molecular mechanism of photosynthetic oxygen evolution remains a mystery in photosynthesis research. Although recent X-ray crystallographic studies of the photosystem II core complex at 3.0-3.5 A resolutions have revealed the structure of the oxygen-evolving center (OEC), with approximate positions of the Mn and Ca ions and the amino acid ligands, elucidation of its detailed structure and the reactions during the S-state cycle awaits further spectroscopic investigations. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was first applied to the OEC in 1992 as detection of its structural changes upon the S(1)-->S(2) transition, and spectra during the S-state cycle induced by consecutive flashes were reported in 2001. These FTIR spectra provide extensive structural information on the amino acid side groups, polypeptide chains, metal core, and water molecules, which constitute the OEC and are involved in its reaction. FTIR spectroscopy is thus becoming a powerful tool in investigating the reaction mechanism of photosynthetic oxygen evolution. In this mini-review, the measurement method of light-induced FTIR spectra of OEC is introduced and the results obtained thus far using this technique are summarized.  相似文献   

10.
Suzuki H  Sugiura M  Noguchi T 《Biochemistry》2005,44(5):1708-1718
pH dependence of the efficiencies of the flash-induced S-state transitions in the oxygen-evolving center (OEC) was studied by means of Fourier transform infrared (FTIR) difference spectroscopy using photosystem II (PSII) core complexes from the thermophilic cyanobacterium Thermosynechoccocus elongatus. The PSII core complexes dark-adapted at different pHs in the presence of ferricyanide as an electron acceptor were excited by four consecutive saturating laser flashes, and FTIR difference spectra induced by each flash were recorded in the region of 1800-1200 cm(-1). Each difference spectrum was fitted with a linear combination of standard spectra measured at pH 6.0, which represent the spectra upon individual S-state transitions, and the transition efficiencies were estimated from the fitting parameters. It was found that the S1 --> S2 transition probability is independent of pH throughout the pH region of 3.5-9.5, while the S2 --> S3, S3 --> S0, and S0 --> S1 transition probabilities decrease at acidic pH with pK values of 3.6 +/- 0.2, 4.2 +/- 0.3, and 4.7 +/- 0.5, respectively. These findings, i.e., the pH-independent S1 --> S2 transition probability and the pK values for the inhibition in the acidic range of the other three transitions, were in good agreement with recent results obtained by electron paramagnetic resonance measurements for PSII-enriched membranes of spinach [Bernát, G., Morvaridi, F., Feyziyev, Y., and Styring, S. (2002) Biochemistry 41, 5830-5843]. On the basis of this correspondence for quite different types of PSII preparations exhibiting marked difference in the pH dependence of the apparent proton release pattern, it is concluded that the inhibition of the S2 --> S3, S3 --> S0, and S0 --> S1 transitions in the acidic region is an inherent property of the OEC. This feature probably reflects proton release from substrate water in these three transitions. On the other hand, all of the S-state transitions remained generally efficient up to pH 9.5 in the alkaline region, except for a slight decrease of the S3 --> S0 transition probability above pH 8 (pK approximately 10). This observation partly differs from the tendency reported for spinach preparations, suggesting that a mechanism different from that in the acidic region is responsible for the transition efficiencies in the alkaline region.  相似文献   

11.
Kimura Y  Ishii A  Yamanari T  Ono TA 《Biochemistry》2005,44(21):7613-7622
In photosynthetic water oxidation, two water molecules are converted to an oxygen molecule through five reaction intermediates, designated S(n) (n = 0-4), at the catalytic Mn cluster of photosystem II. To understand the mechanism of water oxidation, changes in the chemical nature of the substrate water as well as the Mn cluster need to be defined during S-state cycling. Here, we report for the first time a complete set of Fourier transform infrared difference spectra during S-state cycling in the low-frequency (670-350 cm(-1)) region, in which interactions between the Mn cluster and its ligands can be detected directly, in PS II core particles from Thermosynechococcus elongatus. Furthermore, vibrations from oxygen and/or hydrogen derived from the substrate water and changes in them during S-state cycling were identified using multiplex isotope-labeled water, including H2(18)O, D2(16)O, and D2(18)O. Each water isotope affected the low-frequency S-state cycling spectra, characteristically. The bands sensitive only to (16)O/(18)O exchange were assigned to the modes from structures involving Mn and oxygen having no interactions with hydrogen, while the bands sensitive only to H/D exchange were assigned to modes from amino acid side chains and/or polypeptide backbones that associate with water hydrogen. The bands sensitive to both (16)O/(18)O and H/D exchanges were attributed to the structure involving Mn and oxygen structurally coupled with hydrogen in a direct or an indirect manner through hydrogen bonds. These bands include the changes of intermediate species derived from substrate water during the process of photosynthetic water oxidation.  相似文献   

12.
Hillier W  Babcock GT 《Biochemistry》2001,40(6):1503-1509
Vibrational spectroscopy provides a means to investigate molecular interactions within the active site of an enzyme. We have applied difference FTIR spectroscopy coupled with a flash turnover protocol of photosystem II (PSII) to study the oxygen evolving complex (OEC). Our data show two overlapping oscillatory patterns as the sample is flashed through the four-step S-state cycle that produces O(2) from two H(2)O molecules. The first oscillation pattern of the spectra shows a four-flash period four oscillation and reveals a number of new vibrational modes for each S-state transition, indicative of unique structural changes involved in the formation of each S-state. Importantly, the first and second flash difference spectra are reproduced in the 1800-1200 cm(-)(1) spectral region by the fifth and sixth flash difference spectra, respectively. The second oscillation pattern observed is a four-flash, period-two oscillation associated with changes primarily to the amide I and II modes and reports on changes in sign of these modes that alternate 0:0:1:1 during S-state advance. This four-flash, period-two oscillation undergoes sign inversion that alternates during the S(1)-to-S(2) and S(3)-to-S(0) transitions. Underlying this four-flash period two is a small-scale change in protein secondary structure in the PSII complex that is directly related to S-state advance. These oscillation patterns and their relationships with other PSII phenomena are discussed, and future work can initiate more detailed vibrational FTIR studies for the S-state transitions providing spectral assignments and further structural and mechanistic insight into the photosynthetic water oxidation reaction.  相似文献   

13.
Changes in the chemical structure of alpha-carboxylate of the D1 C-terminal Ala-344 during S-state cycling of photosynthetic oxygen-evolving complex were selectively measured using light-induced Fourier transform infrared (FTIR) difference spectroscopy in combination with specific [(13)C]alanine labeling and site-directed mutagenesis in photosystem II core particles from Synechocystis sp. PCC 6803. Several bands for carboxylate symmetric stretching modes in an S(2)/S(1) FTIR difference spectrum were affected by selective (13)C labeling of the alpha-carboxylate of Ala with l-[1-(13)C]alanine, whereas most of the isotopic effects failed to be induced in a site-directed mutant in which Ala-344 was replaced with Gly. Labeling of the alpha-methyl of Ala with l-[3-(13)C]alanine had much smaller effects on the spectrum to induce isotopic bands due to a symmetric CH(3) deformation coupled with the alpha-carboxylate. The isotopic bands for the alpha-carboxylate of Ala-344 showed characteristic changes during S-state cycling. The bands appeared prominently upon the S(1)-to-S(2) transition and to a lesser extent upon the S(2)-to-S(3) transition but reappeared at slightly upshifted frequencies with the opposite sign upon the S(3)-to-S(0) transition. No obvious isotopic band appeared upon the S(0)-to-S(1) transition. These results indicate that the alpha-carboxylate of C-terminal Ala-344 is structurally associated with a manganese ion that becomes oxidized upon the S(1)-to-S(2) transition and reduced reversely upon the S(3)-to-S(0) transition but is not associated with manganese ion(s) oxidized during the S(0)-to-S(1) (and S(2)-to-S(3)) transition(s). Consistently, l-[1-(13)C]alanine labeling also induced spectral changes in the low frequency (670-350 cm(-1)) S(2)/S(1) FTIR difference spectrum.  相似文献   

14.
Suzuki H  Taguchi Y  Sugiura M  Boussac A  Noguchi T 《Biochemistry》2006,45(45):13454-13464
A Ca(2+) ion is an indispensable element in the oxygen-evolving Mn cluster in photosystem II (PSII). To investigate the structural relevance of Ca(2+) to the Mn cluster, the effects of Sr(2+) substitution for Ca(2+) on the structures and reactions of ligands to the Mn cluster during the S-state cycle were investigated using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. FTIR difference spectra representing the four S-state transitions, S(1) --> S(2), S(2) --> S(3), S(3) --> S(0), and S(0) --> S(1), were recorded by applying four consecutive flashes either to PSII core complexes from Thermosynechococcus elongatus or to PSII-enriched membranes from spinach. The spectra were also recorded using biosynthetically Sr(2+)-substituted PSII core complexes from T. elongatus and biochemically Sr(2+)-substituted PSII membranes from spinach. Several common spectral changes upon Sr(2+) substitution were observed in the COO(-) stretching region of the flash-induced spectra for both preparations, which were best expressed in Ca(2+)-minus-Sr(2+) double difference spectra. The significant intensity changes in the symmetric COO(-) peaks at approximately 1364 and approximately 1418 cm(-)(1) at the first flash were reversed as opposite intensity changes at the third flash, and the slight shift of the approximately 1446 cm(-)(1) peak at the second flash corresponded to the similar but opposite shift at the fourth flash. Analyses of these changes suggest that there are at least three carboxylate ligands whose structures are significantly perturbed by Ca(2+)/Sr(2+) exchange. They are (1) the carboxylate ligand having a bridging or unidentate structure in the S(2) and S(3) states and perturbed in the S(1) --> S(2) and S(3) --> S(0) transitions, (2) that with a chelating or bridging structure in the S(1) and S(0) states and perturbed also in the S(1) --> S(2) and S(3) --> S(0) transitions, and (3) that with a chelating structure in the S(3) and S(0) states and changes in the S(2) --> S(3) and S(0) --> S(1) transitions. Taking into account the recent FTIR studies using site-directed mutagenesis and/or isotope substitution [Chu et al. (2004) Biochemistry 43, 3152-3116; Kimura et al. (2005) J. Biol. Chem. 280, 2078-2083; Strickler et al. (2006) Biochemistry 45, 8801-8811], it was concluded that these carboxylate groups do not originate from either D1-Ala344 (C-terminus) or D1-Glu189, which are located near the Ca(2+) ion in the X-ray crystallographic model of the Mn cluster. It was thus proposed that if the X-ray model is correct, the above carboxylate groups sensitive to Sr(2+) substitution are ligands to the Mn ions strongly coupled to the Ca(2+) ion rather than direct ligands to Ca(2+).  相似文献   

15.
T Noguchi  Y Inoue  X S Tang 《Biochemistry》1999,38(31):10187-10195
Fourier transform infrared (FTIR) signals of a histidine side chain were identified in flash-induced S(2)/S(1) difference spectra of the oxygen-evolving complex (OEC) of photosystem II (PS II) using PS II membranes from globally (15)N-labeled spinach and PS II core complexes from Synechocystis cells in which both the imidazole nitrogens of histidine were selectively labeled with (15)N. A negative band at 1113-1114 cm(-1) was downshifted by 7 cm(-1) upon both global (15)N-labeling and selective [(15)N]His labeling, and assigned to the C-N stretching mode of the imidazole ring. This band was unaffected by H-D exchange in the PS II preparations. In addition, several peaks observed at 2500-2850 cm(-1) all downshifted upon global and selective (15)N-labeling. These were ascribed to Fermi resonance peaks on a hydrogen-bonding N-H stretching band of the histidine side chain. FTIR measurements of model compounds of the histidine side chain showed that the C-N stretching band around 1100 cm(-)(1) can be a useful IR marker of the protonation form of the imidazole ring. The band appeared with frequencies in the following order: Npi-protonated (>1100 cm(-1)) > imidazolate > imidazolium > Ntau-protonated (<1095 cm(-1)). The frequency shift upon N-deuteration was occurred in the following order: imidazolium (15-20 cm(-1)) > Ntau-protonated (5-10 cm(-1)) > Npi-protonated approximately imidazolate ( approximately 0 cm(-1)). On the basis of these findings together with the Fermi resonance peaks at >2500 cm(-1) as a marker of N-H hydrogen-bonding, we concluded that the histidine residue in the S(2)/S(1) spectrum is protonated at the Npi site and that this Npi-H is hydrogen bonded. This histidine side chain probably ligated the redox-active Mn ion at the Ntau site, and thus, oxidation of the Mn cluster upon S(2) formation perturbed the histidine vibrations, causing this histidine to appear in the S(2)/S(1) difference spectrum.  相似文献   

16.
Aoyama C  Suzuki H  Sugiura M  Noguchi T 《Biochemistry》2008,47(9):2760-2765
Bicarbonate is known to be required for the maximum activity of photosystem II. Although it is well established that bicarbonate is bound to the nonheme iron to regulate the quinone reactions, the effect of bicarbonate on oxygen evolution is still controversial, and its binding site and exact physiological roles remain to be clarified. In this study, the structural coupling of bicarbonate to the oxygen-evolving center (OEC) was studied using Fourier transform infrared (FTIR) difference spectroscopy. Flash-induced FTIR difference spectra during the S-state cycle of OEC were recorded using the PSII core complexes from Thermosynechococcus elongatus in the presence of either unlabeled bicarbonate or (13)C-bicarbonate. The H (12)CO 3 (-)-minus-H (13)CO 3 (-) double difference spectra showed prominent bicarbonate bands at the first flash, whereas no appreciable bands were detected at the second to fourth flashes. The bicarbonate bands at the first flash were virtually identical to those from the nonheme iron, which was preoxidized by ferricyanide and photoreduced by a single flash, recorded using Mn-depleted PSII complexes. Using the bicarbonate bands of the nonheme iron as an internal standard, it was concluded that no bicarbonate band arising from OEC exists in the S-state FTIR spectra. This conclusion indicates that bicarbonate is not affected by the structural changes in OEC upon the four S-state transitions. It is thus strongly suggested that bicarbonate is neither a ligand to the Mn cluster nor a cofactor closely coupled to OEC, although the possibility cannot be fully excluded that nonexchangeable bicarbonate exists in OEC as a constituent of the Mn-cluster core. The data also provide strong evidence that bicarbonate does not function as a substrate or a catalytic intermediate. Bicarbonate may play major roles in the photoassembly process of the Mn cluster and in the stabilization of OEC by a rather indirect interaction.  相似文献   

17.
A phylloquinone molecule (2-methyl-3-phytyl-1,4-naphthoquinone) occupies the A1 binding site in photosystem I. Previously, we have obtained A1(-)/A1 FTIR difference spectra using labeled and unlabeled photosystem I particles and proposed assignments for many of the bands in the spectra [Sivakumar, V., Wang, R., and Hastings, G. (2005) Biochemistry 44, 1880-1893]. In particular, we suggested that a negative/positive band at 1654/1495 cm(-1) in A1(-)/A1 FTIR DS is due to a C=O/C-:O mode of the neutral/anionic phylloquinone, respectively. To test this hypothesis, we have obtained A1(-)/A1 FTIR DS for menG mutant PS I particles. In menG mutant PS I, phylloquinone in the A1 binding site is replaced with an analogue in which the methyl group at position 2 of the quinone ring is replaced with a hydrogen atom (2-phytyl-1,4-naphthoquinone). In A1(-)/A1 FTIR DS obtained using menG mutant PS I particles, we find that the 1654/1495 cm(-1) bands are upshifted by approximately 6 cm(-1). To test if such upshifts are likely for C=O/C-:O modes of neutral/anionic phylloquinone, we have used density functional theory to calculate the "anion minus neutral" infrared difference spectra for both phylloquinone and its methyl-less analogue. We have also undertaken calculations in which the C4=O carbonyl group of phylloquinone and its methyl-less analogue are hydrogen bonded (to a water or leucine molecule). We find that, irrespective of the hydrogen bonding state of the C4=O group, the C=O/C-:O modes of neutral/reduced phylloquinone are indeed expected to be upshifted by at least 6 cm(-1) upon replacement of the methyl group at position 2 with hydrogen. The calculations also suggest that certain C=C/C-:C modes of neutral/reduced phylloquinone do not shift upon replacement of the methyl group. On the basis of these calculated results, we suggest which bands in the A1(-)/A1 FTIR DS may be associated with C=C/C-:C modes of neutral/reduced phylloquinone, respectively.  相似文献   

18.
Hou LH  Wu CM  Huang HH  Chu HA 《Biochemistry》2011,50(43):9248-9254
NH(3) is a structural analogue of substrate H(2)O and an inhibitor to the water oxidation reaction in photosystem II. To test whether or not NH(3) is able to replace substrate water molecules on the oxygen-evolving complex in photosystem II, we studied the effects of NH(3) on the high-frequency region (3750-3550 cm(-1)) of the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectra (pH 7.5 at 250 K), where OH stretch modes of weak hydrogen-bonded active water molecules occur. Our results showed that NH(3) did not replace the active water molecule on the oxygen-evolving complex that gave rise to the S(1) mode at ~3586 cm(-1) and the S(2) mode at ~3613 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) FTIR difference spectrum of PSII. In addition, our mid-frequency FTIR results showed a clear difference between pH 6.5 and 7.5 on the concentration dependence of the NH(4)Cl-induced upshift of the S(2) state carboxylate mode at 1365 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectra of NH(4)Cl-treated PSII samples. Our results provided strong evidence that NH(3) induced this upshift in the spectra of NH(4)Cl-treated PSII samples at 250 K. Moreover, our low-frequency FTIR results showed that the Mn-O-Mn cluster vibrational mode at 606 cm(-1) in the S(2)Q(A)(-)/S(1)Q(A) spectrum of the NaCl control PSII sample was diminished in those samples treated with NH(4)Cl. Our results suggest that NH(3) induced a significant alteration on the core structure of the Mn(4)CaO(5) cluster in PSII. The implication of our findings on the structure of the NH(3)-binding site on the OEC in PSII will be discussed.  相似文献   

19.
It is shown that the hydrazine-induced transition of the water-oxidizing complex (WOC) to super-reduced S-states depends on the presence of bicarbonate in the medium so that after a 20 min treatment of isolated spinach thylakoids with 3 mM NH(2)NH(2) at 20 degrees C in the CO(2)/HCO(3)(-)-depleted buffer the S-state populations are: 42% of S(-3), 42% of S(-2), 16% of S(-1) and even formal S(-4) state is reached, while in the presence of 2 mM NaHCO(3), the same treatment produces 30% of S(-3), 38% of S(-2), and 32% of S(-1) and there is no indication of the S(-4) state. Bicarbonate requirement for the oxygen-evolving activity, very low in untreated thylakoids, considerably increases upon the transition of the WOC to the super-reduced S-states, and the requirement becomes low again when the WOC returns back to the normal S-states using pre-illumination. The results are discussed as a possible indication of ligation of bicarbonate to manganese ions within the WOC.  相似文献   

20.
Sivakumar V  Wang R  Hastings G 《Biochemistry》2005,44(6):1880-1893
Time-resolved step-scan Fourier transform infrared (FTIR) difference spectroscopy, with 5 mus time resolution, has been used to produce P700(+)A(1)(-)/P700A(1) FTIR difference spectra in intact photosystem I particles from Synechococcus sp. 7002 and Synechocystis sp. 6803 at 77 K. Corresponding spectra were also obtained for fully deuterated photosystem I particles from Synechococcus sp. 7002 as well as fully (15)N- and (13)C-labeled photosystem I particles from Synechocystis sp. 6803. Static P700(+)/P700 FTIR difference spectra at 77 K were also obtained for all of the unlabeled and labeled photosystem I particles. From the time-resolved and static FTIR difference spectra, A(1)(-)/A(1) FTIR difference spectra were constructed. The A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled trimeric photosystem I particles from both cyanobacterial strains are very similar. There are some mode frequency differences in spectra obtained for monomeric and trimeric PS I particles. However, the spectra can be interpreted in an identical manner, with the proposed band assignments being compatible with all of the data obtained for labeled and unlabeled photosystem I particles. In A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled photosystem I particles, negative bands are observed at 1559 and 1549-1546 cm(-)(1). These bands are assigned to amide II protein vibrations, as they downshift approximately 86 cm(-)(1) upon deuteration and approximately 13 cm(-)(1) upon (15)N labeling. Difference band features at 1674-1677(+) and 1666(-) cm(-)(1) display isotope-induced shifts that are consistent with these bands being due to amide I protein vibrations. The observed amide modes suggest alteration of the protein backbone (possibly in the vicinity of A(1)) upon A(1) reduction. A difference band at 1754(+)/1748(-) cm(-)(1) is observed in unlabeled spectra from both strains. The frequency of this difference band, as well as the observed isotope-induced shifts, indicate that this difference band is due to a 13(3) ester carbonyl group of chlorophyll a species, most likely the A(0) chlorophyll a molecule that is in close proximity to A(1). Thus A(1) reduction perturbs A(0), probably via a long-range electrostatic interaction. A negative band is observed at 1693 cm(-)(1). The isotope shifts associated with this band are consistent with this band being due to the 13(1) keto carbonyl group of chlorophyll a, again, most likely the 13(1) keto carbonyl group of the A(0) chlorophyll a that is close to A(1). Semiquinone anion bands are resolved at approximately 1495(+) and approximately 1414(+) cm(-)(1) in the A(1)(-)/A(1) FTIR difference spectra for photosystem I particles from both cyanobacterial strains. The isotope-induced shifts of these bands could suggest that the 1495(+) and 1414(+) cm(-)(1) bands are due to C-O and C-C modes of A(1)(-), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号