共查询到20条相似文献,搜索用时 15 毫秒
1.
几种针阔叶树种不同光照强度下叶绿素荧光特性的研究 总被引:15,自引:1,他引:15
测定研究了油松、新疆杨等7种针阔叶树种不同光照强度下最大量子效率(ΦP)和实际量子效率(PhiPSⅡ)等叶绿素荧光特性的变化规律,进而研究了树木对光照强度适应性。结果表明,ΦP和PhiPSⅡ随光强度增加呈下降趋势,二者的光进程变化呈正相关直线。运用方程获得的量子效率最大点、光进程变化转折点和量子效率最小点,可评价树木光合量子效率的大小和对强光的适应性。依PhiPSⅡ最大值对被试树种光合量子效率排序为沙棘>白榆>新疆杨>白腊>油松>白木千>侧柏;依ΦP光进程变化转折点和量子效率最小点对应的光强度评价被试树木对强光的适应能力排序为新疆杨>白榆>侧柏>白腊>油松>沙棘>白木千,结果与被试树种生态特征基本一致。 相似文献
2.
Lyliana Y. Rentería Víctor J. Jaramillo Angelina Martínez-Yrízar Alfredo Pérez-Jiménez 《Trees - Structure and Function》2005,19(4):431-441
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability. 相似文献
3.
Seasonalvariation in leaf nitrogen of mature green and senescent leaves and nitrogenresorption efficiency in three plants (Spartina maritima, Halimioneportulacoides and Arthrocnemum perenne) of aTagus estuary salt marsh are reported. Total nitrogen concentrations in greenand senescent leaves were higher during winter (December and March). Soilinorganic nitrogen availability showed an opposite pattern with higherconcentrations during summer (June and September) when total leaf biomass washigher. Nitrogen resorption efficiency ranged between 31 and 76% andH. portulacoides was the plant that better minimizednitrogen loss by this process. Nitrogen resorption occurred mainly from thesoluble protein pool, although other fractions must have been broken down duringthe resorption process. No significant seasonal variation in nitrogen resorptionefficiency and no relation to leaf total nitrogen or soil nitrogen availabilitywere found. This suggests that the efficiency of the resorption process is notdetermined by the plant nitrogen status nor by the availability of the nutrientin the soil. Nevertheless, resorption from senescing leaves may play animportant role in the nitrogen dynamics of salt marsh plants and reduce thenitrogen requirements for plant growth. 相似文献
4.
Abstract Nutrient resorption from senescing leaves enables plants to conserve and reuse nutrients. As such, it could be expected that plant species adapted to infertile soils have a higher nutrient resorption efficiency (percentage reduction of nutrients between green and senesced leaves) and/or higher nutrient resorption proficiency (absolute reduction of nutrients in senesced leaves) than those adapted to fertile soils. Our objective was to compare nitrogen (N) and phosphorous (P) resorption of two congener grasses that successfully occupy uplands of relatively low fertility (Stipa gynerioides) or lowlands of relatively high fertility (Stipa brachychaeta) in natural grasslands of central Argentina. The two Stipa species did not differ in N and P resorption efficiency, but S. gynerioides had a higher N and P resorption proficiency than S. brachychaeta. As a consequence, leaf‐level N and P use efficiency were higher in the species adapted to low fertility conditions than in the species adapted to high fertility conditions. The higher nutrient resorption proficiency of S. gynerioides was also associated with relatively low leaf‐litter decomposition and nutrient release rates found in a previous study. 相似文献
5.
Fire and nitrogen (N) addition, both widely used grassland restoration strategies, strongly influence community composition and ecosystem functioning. However, little is known about their effects on plant nutrient resorption from senescing leaves, especially in semi-arid ecosystems. We evaluated the effects of fire, N addition (5.25 g N m−2 yr−1) and their potential interactions on nutrient resorption in five plant species in a semi-arid grassland in northern China. Foliar nutrient concentrations and resorption proficiencies and efficiencies varied substantially among species and functional groups. Fire increased green leaf N concentration ([N]g) and decreased N resorption proficiency (N RP), P resorption proficiency (P RP) and P resorption efficiency (P RE). N addition led to higher [N]g and lower N resorption, whereas it did not affect P related responses. There was no interaction between fire and N addition to affect all response variables except for green leaf P concentration ([P]g). These results suggest that fire and N addition can influence ecosystem nutrient cycling directly by changing resorption patterns and litter quality. Given the substantial interspecific variations in nutrient content and resorption and the potentially changing community composition, both fire and N addition may have indirect impacts on ecosystem nutrient cycling in this semi-arid grassland. 相似文献
6.
Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance 总被引:1,自引:0,他引:1
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios. 相似文献
7.
热带雨林三种树苗叶片光合机构对光强的适应 总被引:16,自引:10,他引:16
对生长在不同光强(自然日光的8%,25%,50%)下西双版纳热带雨林3种木本植物团花(Anthocephalus chinensis)、玉蕊(Barringtonia pendala)和藤黄(Garrcinia hanburyi)幼苗光合机构的研究表明,随着生长光强的升高,植物叶片的光饱和点、补偿点、净光合速率和非光化学淬灭系数(NPQ)升高,而表现量子效率(AQY)、有效光化学量子产量(Fv/Fm)、光化学淬灭系数(qP)下降.在抗氧化系统中,超氧化物歧化酶(SOD)、抗坏血酸过氧化酶(APX)活性随着光强的升高而升高,而过氢化物酶(CAT)活性与生长光强的变化不一致.抗坏血酸(AsA)含量随着光强的升高而急剧上升。最能反映PFD的变化.可以认为,除与叶黄素循环有关的热耗散增大之外,植物叶片抗氧化系统的加强也是响应强光的一种保护措施. 相似文献
8.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式 总被引:1,自引:0,他引:1
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。 相似文献
9.
10.
4种阔叶树种叶中氮和磷的季节动态及其转移 总被引:5,自引:1,他引:5
从叶完全展开到生长季结束 ,对常绿阔叶树种日本米槠 (Castanopsis cuspidata(Thunb.) Schottky)和具柄冬青 (Ilexpedunculosa Miq)及落叶阔叶树种栎 (Quercus serrata Murr.)和栓皮栎 (Quercus variabilis Blume)叶片的 N和 P浓度、含量和养分转移进行了测定 .在生长期中日本米槠新叶的 N浓度在 5月为 36 .6 g/ kg,然后降到 15 .5和 17.5 g/ kg之间 ,其老叶的N浓度波动于 10 .4和 13.1g/ kg的范围内 ,而具柄冬青新叶的 N浓度从 2 7.3下降到 16 .0 g/ kg,接着上升到 18.3g/ kg,其老叶的 N浓度在 12 .0到 15 .5 g/ kg的范围内。栎和栓皮栎的叶 N浓度分别从 2 8.8下降到 18.1g/ kg和从 2 8.5下降到17.5 g/ kg。日本米槠新叶的 N含量从 1.5 4下降到 1.35 g/ m2 ,接着上升到 1.5 0 g/ m2 ,其老叶 N含量从 1.36下降到1.0 0 g/ m2 ,接着上升到 1.2 1g/ m2 ,而具柄冬青新叶的 N含量从 2 .2 5下降到 1.6 0 g/ m2 ,接着上升到 2 .2 0 g/ m2 ,其老叶的 N含量从 2 .13下降到 1.6 5 g/ m2。栎和栓皮栎的叶 N含量分别从 2 .10下降到 1.2 8g/ m2和从 2 .95下降到 2 .13g/ m2。日本米槠新叶的 P浓度由 3.39g/ kg降到 1.12和 1.15 g/ kg之间 ,其老叶的 P浓度变化于 0 .6 6和 0 .88g/ kg的范围内 ,而具柄冬青新叶的 相似文献
11.
Xingchang Wang Qi Wang Yue Chen Rui Zhao Jiahui Zhang Xiankui Quan Fan Liu Chuankuan Wang 《Journal of Plant Ecology》2022,15(4):700
颜色和物候表明46种温带落叶木本植物衰老叶片的养分变异
不同共生植物的叶片养分含量差异显著,反映了不同的叶片养分利用策略。然而,衰老叶片养分的种间变异及其驱动因素尚不清楚。本研究旨在探讨衰老叶片养分的种间变异及其驱动因素。我们在中国东北的帽儿山森林生态系统研究站测定了46种共存温带落叶木本植物新鲜落叶的碳、氮、磷浓度。 采用随机森林模型量化10个生物因素(菌根类型、固氮类型、生长形态、耐阴性、叶片质地、变色程度、变色类型、叶片变色峰期、落叶峰期和落叶末期)的相对重要性。研究结果表明,落叶氮浓度种间变化为4倍,磷浓度变化达9倍。较高的氮和磷平均浓度(15.38和1.24 mg g−1)表明该森林氮和磷限制较弱。功能群仅对特定养分及其比值有显著影响。磷浓度、氮磷比与外生菌根树种的落叶高峰日和落叶结束日呈负相关。颜色鲜艳的叶片(红色>棕色>黄色>黄绿色>绿色)倾向于比绿色叶片氮和磷浓度更低而碳氮比和碳磷比较高。随机森林模型表明,秋季叶变色和落叶物候贡献了80%的种间变异解释量。这些结果增加了我们对温带森林木本植物营养策略之衰老叶片养分变异性的理解。 相似文献
12.
Responses to light changes in tropical deciduous woody seedlings with contrasting growth rates 总被引:2,自引:0,他引:2
We evaluated the responses in growth, biomass allocation, photosynthesis and stomatal conductance, to changes in light in
woody seedlings from the tropical deciduous forest in Mexico, which shows a highly seasonal rain pattern. We studied ten species,
which differed by 30-fold in relative growth rate (RGR). We analyzed plant growth in two contrasting light levels during 52
days and two transfers: from high to low (HL) and from low to high (LH) light intensity, and the respective controls in high
(HH) and low (LL) light for another 52 days. The photosynthetic capacity (A
max) and stomatal conductance were measured at the day of the transfer between light conditions and at the end of the experiment.
Species with high RGR showed the largest changes in RGR in response to contrasting light conditions (HH/LL ratio), and species
with low RGR showed low responses. The fast-growing species were the most plastic, followed by species with intermediate growth
rates, with the slow-growing species being the least plastic. Fast-growing species achieved higher maximum photosynthetic
capacities (A
max) and stomatal conductance and higher response to light than slow-growing species. Species with high RGR showed a low RGR
HH/LH ratio, suggesting a large response of L plants when transfered to H. The RGR of the species were associated with species
specific leaf area and with the response in the leaf area, net assimilation rate and leaf weight ratio, suggesting the importance
of the leaf area produced and the leaf characteristics rather than root:shoot ratio in determining RGR. Considering that seed
germination is expected at the beginning of the rainy period, seedlings of most of the species will experience high-light
conditions during its early growth. There are large annual variations in the time required for canopy closure (35–75 days).
The influence of these variations may have different effect on the species studied. Species with intermediate growth rate
and intermediate response to light changes were less affected by light reduction than fast-growing species. The intermediate-RGR
species Caesalpiniaeriostachys is the most abundant and widely distributed species, perhaps this could be in part due to its ability to acclimate to both
light increases and decreases. The fast-growing species studied here can be found in open sites in the forest and in areas
cleared for pasture growth. These fast-growing species eventually reach the canopy, although this may require several canopy
openings during their lives, which implies juvenile shade tolerance. In the tropical deciduous forest juvenile pioneer trees
also benefit from the temporary high light available caused by the dry period during the rainy season. The slow-growing species
Celaenodendronmexicanum forms small patches of monospecific forest; the adult trees are not completely deciduous, and they retain their old leaves
for a long time period before shedding. Thus seedlings of this species may receive lower levels of light, in agreement with
its shade tolerance and its lower response to light increases.
Received: 14 April 1997 / Accepted: 29 July 1997 相似文献
13.
A recent theoretical model (the West, Brown and Enquist, WBE model) hypothesized that plants have evolved a network of xylem conduits with a tapered structure (narrower conduits distally) which should minimize the cost of water transport from roots to leaves. Specific measurements are required to test the model predictions. We sampled both angiosperms and gymnosperms (50 trees) growing in different environments with heights ranging from 0.5 to 44.4 m, measuring variations of the xylem-conduit diameter from tree top to stem base. In all trees measured, mean hydraulically weighted conduit diameters (Dh) at the tree top were narrower than those at the stem base. In actively growing trees, the longitudinal variation of Dh showed a degree of tapering in agreement with WBE predictions, while trees close to their maximum height showed slightly lower conduit tapering. Comparing different species, a very good correlation was observed between degree of xylem tapering and tree height (r2 = 0.88; P < 0.0001) independently of any other variable (age, site, altitude, etc.). As predicted by WBE, sampled trees seemed to converge towards similar xylem conduit tapering. However, trees approaching their maximum height had a nonoptimal tapering which appeared insufficient to compensate for the progressive increase in tree height. 相似文献
14.
六种木本植物水分利用效率和其小生境关系研究 总被引:35,自引:2,他引:35
北京山区落叶阔叶林优势种的水分利用效率(WUE)与其所在地的气候条件有很密切的关系,特别是大气相对湿度、太阳辐射强度、饱和水汽压亏缺(VPD)和温度.辽东栎、山杏、大叶白蜡、北京丁香、荆条和核桃楸等植物在整个生长季水分利用效率的变化幅度在3.76~4.95 mmolCO2.mol1H2O之间,平均水分利用效率为4.428±0.386 mmo1 CO2.mol-1H 2O,水分利用效率以山杏最高,核桃楸最低.在整个生长季中,这些植物在早春时水分利用效率高于生长旺期.另外,同种植物生长在于旱瘠薄生境上的水分利用效率高. 相似文献
15.
Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests 总被引:1,自引:0,他引:1 下载免费PDF全文
Yelin Zeng Xi Fang Wenhua Xiang Xiangwen Deng Changhui Peng 《Ecology and evolution》2017,7(24):11033-11043
This study investigated seasonal patterns in stoichiometric ratios, nutrient resorption characteristics, and nutrient use strategies of dominant tree species at three successional stages in subtropical China, which have not been fully understood. Fresh leaf and leaf litterfall samples were collected in growing and nongrowing seasons for determining the concentrations of carbon (C), nitrogen (N), and phosphorus (P). Then, stoichiometric ratios (i.e., C:N, C:P, N:P, and C:N:P) and resorption parameters were calculated. Our results found that there was no consistent variation in leaf C:N and C:P ratios among different species. However, leaf N:P ratios in late‐successional species became significantly higher, indicating that P limitation increases during successional development. Due to the P limitation in this study area, P resorption efficiency and proficiency were higher than corresponding N resorption parameters. Dominant tree species at early‐successional stage adopted “conservative consumption” nutrient use strategy, whereas the species at late‐successional stage inclined to adopt “resource spending” strategy. 相似文献
16.
植物营养器官在枯萎过程中将部分氮素转移到储藏组织之中,是植物适应生境的重要策略。以位于内蒙古荒漠草原的增温和添加氮素的交互试验为平台,对建群种短花针茅(Stipa breviflora)以及优势种无芒隐子草(Cleistogenes songorica)、银灰旋花(Convolvulus ammannii)、冷蒿(Artemisia frigida)和木地肤(Kochia prostrata)等5种多年生植物绿叶期和枯叶期氮浓度,以及氮素回收效率进行了研究。结果表明:增温处理下,植物绿叶期和枯叶期的平均氮素浓度提高了5.5%和11.3%,氮素回收效率显著降低了7.0%。氮素添加使绿叶期植物氮浓度显著提高了5.2%,使植物氮素回收效率降低2.9%。增温和氮素添加对植物枯叶期、绿叶期氮浓度和氮素回收效率有显著的交互作用。氮浓度和氮素回收效率对增温和氮素添加的响应在5个物种间都有显著差异,即这种响应具有物种特异性。研究表明独立的增温和氮素添加以及两者的交互作用都降低该荒漠草原生态系统中植物氮素回收效率,这些结果将为气候变化条件下荒漠生态系统氮素回收效率变化趋势的预测提供数据支持和实验证据。 相似文献
17.
18.
Francisco M. Padilla Juan de Dios Miranda Francisco I. Pugnaire 《Plant and Soil》2007,295(1-2):103-113
Using a 141 F2 population generated from maize inbred B64 × teosinte Zea nicaraguensis cross, quantitative trait loci (QTLs) controlling aerenchyma formation in roots under non-flooding drained soil conditions
were identified. Seedlings of Z. nicaraguensis formed clear aerenchyma in the cortex of adventitious roots in non-flooding conditions, whereas the maize inbred line B64
did not. In the F2 population, the capacity to develop aerenchyma exhibited wide and continuous variation, suggesting the trait was controlled
by multiple genes. A linkage map was developed using 85 SSR markers, covering 1,224 cM across all ten chromosomes. Composite
interval mapping analysis revealed that four QTLs for aerenchyma formation under non-flooding conditions were located to two
regions of chromosome 1 (identified as Qaer1.02-3 and Qaer1.07), chromosome 5 (Qaer5.09) and chromosome 8 (Qaer8.06-7), and these explained 46.5% of the total phenotypic variance. The multiple interval mapping approach identified additional
QTLs on chromosomes 1 (Qaer1.01) and 5 (Qaer5.01). Using these results, it may be possible to use SSR markers linked to aerenchyma formation in a marker assisted selection
approach to introduce aerenchyma formation in drained soil conditions into maize for the eventual development of flooding
tolerant maize hybrids. 相似文献
19.
Both water and nutrients are limiting in arid environments, and desert plants have adapted to these limitations through numerous
developmental and physiological mechanisms. In the Mono Basin, California, USA, co-dominant Sarcobatus vermiculatus and Chrysothamnus nauseosus ssp. consimilis are differentially N and P limited. We hypothesized that low leaf N resorption contributes to N-limitation in Sarcobatus and that low leaf P resorption contributes to P-limitation in Chrysothamnus. As predicted, Sarcobatus resorbed proportionally 1.7-fold less N than Chrysothamnus, but reduced leaf P in senescent leaves to lower levels than Chrysothamnus (8.0–10.8-fold lower based on leaf area or mass, respectively), consistent with N, but not P limitations in Sarcobatus. Again, as predicted, Chrysothamnus resorbed proportionally 2.0-fold less P than Sarcobatus yet reduced leaf N in senescent leaves to lower levels than Sarcobatus (1.8–1.3-fold lower based on leaf area or mass, respectively), consistent with P, but not N limitations in Chrysothamnus. Leaf N and P pools were approximately 50% of aboveground pools in both species during the growing season, suggesting leaf
resorption can contribute significantly to whole plant nutrient retention. This was consistent with changes in leaf N vs.
P concentration as plants grew from seedlings to adults. Our results support the conclusion that N-limitation in Sarcobatus and P-limitation in Chrysothamnus are in part caused by physiological (or other) constraints that prevent more efficient resorption of N or P, respectively.
For these species, differential nutrient resorption may be a key physiological component contributing to their coexistence
in this saline, low resource habitat. 相似文献
20.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征 总被引:5,自引:0,他引:5
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。 相似文献