首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A Amar  I Kahane  S Rottem  S Razin 《Microbios》1979,24(96):93-102
The binding of iodinated concanavalin A (Con A) and Ricinus communis agglutinin (RCA) to intact cells and isolated membranes of Acholeplasma laidlawii, Mycoplasma hominis and Mycoplasma capricolum decreased with the progression of the culture from the mid- to the late-logarithmic phase of growth. The binding of the lectins to Acholeplasma laidlawii membranes had no significant effect on membrane fluidity, as assessed by electron-paramagnetic resonance spectroscopy of spin-labelled fatty acids, and had no effect on several membrane-associated enzymic activities. Temperature affected the binding of Con A and RCA in an opposite manner: the binding of Con A increased, whereas that of RCA decreased, on raising the temperature from 4 degrees C to 37 degrees C. No significant difference in lectin binding was found between oleate- and elaidate-enriched membranes at low temperatures where the former was in the liquid-crystalline state and the latter in the gel state, suggesting that membranes fluidity does not influence the binding of Con A and RCA to Acholeplasma laidlawii membranes.  相似文献   

2.
Phospholipase A2 (EC 3.1.1.4) from pig pancreas hydrolyzes phosphatidylglycerol in intact cells and isolated membranes of Acholeplasma laidlawii. Complete degradation of phosphatidylglycerol in intact cells at 37 degrees C does not result in lysis as shown by the retention of intracellular K+ ions and the cytoplasmic glucose-6-phosphatase, as well as the inability to detect activity of membrane-bound intracellular NADH-oxidase. A. laidlawii was grown on linoleic acid. Phospholipase A2 treatment of these cells at 5 degrees C, at which temperature the lipids are still in the liquid-crystalline state, results in a rapid breakdown of 50% of the phosphatidylglycerol. The residual phosphatidylglycerol can be hydrolyzed only at elevated temperatures and at much smaller rates, depending strongly on the incubation temperature. When membranes isolated from these cells are incubated at 5 degrees C, 70% of the phosphatidylglycerol is hydrolyzed immediately. The hydrolysis of the residual 30% is again strongly temperature dependent. Cells were grown on palmitate, elaidate, or oleate to investigate possible effects of the lipid phase transition on the accessibility of phosphatidylglycerol for phospholipase A2. Under conditions in which all the lipid is in the solid state, no hydrolysis occurs. When solid and liquid-crystalline lipid phases coexist, a limited hydrolysis of phosphatidylglycerol can be observed. The results demonstrate the disposition of phosphatidylglycerol in three different pools in the membrane of A. laidlawii. Phospholipase A2 has been used to discriminate between these pools and to estimate the amount of phosphatidylglycerol which is present in the liquid-crystalline phase. The present data, however, do not allow a definite localization of the phosphatidylglycerol pools.  相似文献   

3.
The physical state of the membrane lipids in the plasma membranes of intact, live Acholeplasma laidlawii B cells was probed by Fourier-transform infrared spectroscopy and compared with that in isolated membranes. Infrared spectra of live A. laidlawii B cells, enriched biosynthetically in the presence of avidin, with saturated deuterated and unsaturated non-deuterated fatty acids have been recorded at a variety of temperatures. The results indicate that within the temperature range of the gel to liquid-crystal phase transition, the live cells are able to keep the 'fluidity' of their plasma membranes at a considerably higher value compared to that in the isolated membranes at the same temperature. While this is a generally valid observation, the degree by which live and isolated membranes differ in their liquid-crystal-phase content at a given temperature depends on the nature of the exogenous fatty acid and the temperature of growth.  相似文献   

4.
Cheng XL  Tran QM  Foht PJ  Lewis RN  McElhaney RN 《Biochemistry》2002,41(27):8665-8671
Acholeplasma laidlawii B cells made fatty acid auxotrophic by growth in the presence of the biotin-binding agent avidin grow increasingly poorly at 37 degrees C when supplemented with single exogenous linear saturated fatty acids of decreasing hydrocarbon chain length. Interestingly, this progressive decrease in growth yields with decreasing hydrocarbon chain length is not observed when cells are cultured in the presence of other classes of exogenous fatty acids. Moreover, normal growth is observed is other types of fatty acids with equivalent or shorter hydrocarbon chain lengths, indicating that poor growth in the presence of short-chain linear saturated fatty acids cannot be due to a decrease in membrane lipid bilayer thickness per se. To understand the molecular basis of such growth inhibition, we determined the growth yields, membrane lipid fatty acid and polar headgroups compositions, and phase state and fluidity of the membrane lipids in cells progressively biosynthetically enriched in tridecanoic acid (13:0) or dodecanoic acid (12:0). The growth of fatty acid auxotrophic A. laidlawii B cells grown in the presence of binary combinations of an exogenous fatty acid which supports normal growth on its own and 13:0 or 12:0 revealed that growth inhibition is not observed until 13:0 and 12:0 biosynthetic incorporation levels reach about 90 and 60 mol %, respectively, after which growth is markedly inhibited. Differential scanning calorimetric analyses of membranes from cells maximally enriched in 13:0 indicate that the lipid gel/liquid-crystalline phase transition temperature is unexpectedly high but that at the growth temperature of 37 degrees C, the membrane lipid bilayer is almost exclusively in the liquid-crystalline state but is certainly not excessively fluid. However, high levels of 13:0 incorporation produce a greatly elevated level of the high melting, reversed nonlamellar phase-preferring lipid component monoglucosyl diacylglycerol, and greatly reduced levels of all other membrane lipid components. This marked elevation of monoglucosyl diacylglycerol levels can be rationalized as a regulatory response which maintains the lamellar/nonlamellar phase-forming propensity of the total membrane lipid mixture relatively constant in the face of the biosynthetic incorporation of increasing quantities of short-chain saturated fatty acids, which favor the lamellar phase. However, this lipid biosynthetic response produces a marked decline in the levels of anionic phospholipid and phosphoglycolipid which are probably required to maintain the minimal negative surface charge density of the lipid bilayer, which we suggest is responsible for the observed growth inhibition. This work shows that the lipid biosynthetic regulatory mechanisms present in this organism may sometimes operate at cross purposes such that it is not possible to simultaneously optimize all of the biologically relevant physical properties of the membrane lipid bilayer.  相似文献   

5.
The first application of deuterium magentic resonance of specifically labelled lipids to the study of a natural biological membrane is described. Palmitic acid labelled at the terminal methyl group with deuterium was incorporated biosynthetically into the lipids of the plasma membrane of Acholeplasma laidlawii. The deuterium nuclear magnetic resonance spectra contain quadrupole splittings which yield directly order parameters for this region of the membrane. Below the growth temperature (37 degrees C) the spectra are indicative of lipid in both gel and liquid crystalline states. Above this temperature they demonstrate the existence of an entirely liquid crystalline membrane whose order parameter decreases rapidly with increasing temperature. Comparison with egg phosphatidylcholine over the same temperature range shows a more rapid change in order with temperature for the A. laidlawii membranes.  相似文献   

6.
The hydrocarbon chain orientational order parameters of membranes of Acholeplasma laidlawii B enriched with large quantities of a linear saturated, a methyl iso-branched, or a methyl anteiso-branched fatty acid plus small quantities of various isomeric monofluoropalmitic acid probes were determined via fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) over a range of temperatures spanning the gel to liquid-crystalline phase transitions (determined by differential scanning calorimetry). Membrane orientational order profiles in the liquid-crystalline state were generally similar regardless of the particular fatty acyl structure, showing a region of relatively constant order preceding a region of progressive decline in order toward the methyl terminus of the acyl chain. In the gel state, the order profile of the linear saturated fatty acid enriched membranes was characteristically flat, with little head to tail gradation of order. In contrast, the methyl iso-branched and the methyl anteiso-branched enriched membranes exhibited a local disordering in the gel phase reflected in a very pronounced head to tail gradient of order, which remained at temperatures below the lipid phase transition. In addition, the methyl iso- and anteiso-branched fatty acid enriched membranes were overall more disordered than the membrane containing only linear saturated fatty acyl groups. Thus, at a constant value of reduced temperature below the lipid phase transition, overall order decreased in the progression 15:0 greater than 16:0i greater than 16:0ai, suggesting that these methyl-branched substituents lower the lipid phase transition by disrupting the gel phase lipid chain packing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism.  相似文献   

8.
Acholeplasma laidlawii strain B cell cultured in complex medium have an optimal temperature of growth at 31 degrees. Maximal growth at this temperature is 80% higher than at 37 degrees. By stirring of the culture, the yield of the cell mass of 4 liter-cultures increases by 200%. With these modifications the yield of cell membranes increases 3--4 times with respect to that of static culturing at 37 degrees. Membranes obtained from better aerated cultures have a lower flavin and carotenoid content. Membranes obtained from agitated cultures show a higher content of the more insoluble membrane-core proteins. It is suggested that these proteins play a role in membrane and cell adhesiveness.  相似文献   

9.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

10.
The thermotropic behaviour of fatty acid-homogeneous membranes of Acholeplasma laidlawii B was investigated by Fourier transform infrared spectroscopy. The organism was grown at 37°C in the presence of avidin, an inhibitor of fatty acid synthesis, in a medium supplemented with pentadecanoic acid-d29; the enrichment of the membranes with this fatty acid was 95%. The temperature-dependent phase behaviour of the membranes was studied via the C–D stretching vibrational modes of the membrane lipids and was compared with that of the lipid extract. The high level of fatty acid homogeneity results in a sharp (for natural membranes) gel to liquid crystalline phase transition. The transition, in both the membranes and extracted lipids, is centered at about 6°C above the growth temperature. During the transition two principal liquid states are evident, one being more conformationally ordered than the other. The effect of proteins on the principal lipid phase transition is minimal. However, in the intact membranes there is evident a weaker, lower temperature transition, which is not evident in the extracted lipids.  相似文献   

11.
J H Davis  C P Nichol  G Weeks  M Bloom 《Biochemistry》1979,18(10):2103-2112
The cytoplasmic and outer membranes of Escherichia coli were studied between 0 and 40 degrees C by deuterium magnetic resonance quadrupolar echo spectroscopy. The L51 strain of E. coli was used to incorporate perdeuterated palmitic acid into the membrane phospholipids. The cytoplasmic and outer membranes were separated using standard techniques. The spectrum of each membrane preparation was dominated at high temperatures (greater than or equal to 37 degrees C) by the characteristic liquid-crystalline plateau previously observed for perdeuterated palmitate chains in model phospholipid membranes. At low temperatures, the shape and width of the spectrum were characteristic of the gel phase. The relative intensities of the liquid-crystalline and gel features varied systematically with temperature. A quantitative analysis of the acyl chain orientational order was carried out by using the method of moments. The orientational order at each temperature was greater in the outer membrane sample than in that of the cytoplasmic membrane, indicating that the liquid-crystalline-gel transition region in the outer membrane is shifted to higher temperatures than that of the cytoplasmic membrane by about 7 degrees C. It is clear from the results that most of the phospholipid molecules participate in the phase transition.  相似文献   

12.
1. The 129 MHz 31P-NMR spectrum of Acholeplasma laidlawii membranes is very similar to the spectrum of the derived liposomes and is a typical "solid state" spectrum in which the major contribution to the linewidth is made by the chemical shift anisotropy. From the value of the chemical shift anisotropy an order parameter of 0.15 is estimated for the lipid phosphates in both membranes. 2. The 31P-NMR spectrum of the A. laidlawii membrane is insensitive to pronase digestion of 4-60% of the membrane proteins and subsequent cytochrome C binding. These results indicate that either no strong lipid polar headgroup-protein interactions occur in the membrane or that the lipid-protein "complexes" in the membrane have a fast rotation (Tc shorter than 10(-6)S) along an axis perpendicular to the plane of the membrane. 3. Phospholipase A2 degrades all the phosphatidylglycerol in the membrane. The resulting membrane contains a phosphoglycolipid as the sole phosphorus-containing compound. The 31P-NMR spectrum of these membranes is identical to the spectrum of the native membranes suggesting a similar motion for the phosphate groups in both lipids. 4. Ca2+ binding to liposomes prepared from either the total polar lipids or the total phosphorus-containing lipids isolated from the A. laidlawii membrane does not affect the 21P-NMR spectrum. 5. The 31P-NMR spectrum of the membranes and derived liposomes, however, is sensitive to lipid phase transitions. When the membrane lipids are in the gel state a broadening of the 31P resonance occurs demonstrating that the polar head group motion in a biological membrane is more restricted below the lipid-phase transition temperature.  相似文献   

13.
The purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes was reconstituted with dimyristoylphosphatidylcholine using a cholate solubilization and dialysis procedure. The incorporation of this enzyme into the phospholipid bilayer is accompanied by an enhancement of its specific activity and by a restoration of its lipid phase state-dependent properties which were lost during solubilization and purification from native membranes. Moreover, reconstitution of this ATPase with phospholipid also stabilizes it against cold inactivation at low temperatures (approximately equal to 0 degrees C), oxidative degradation at room temperature, and thermal denaturation at elevated temperatures (approximately equal to 55 degrees C). The elution profile from a Sepharose 4B-CL column indicates that all of the ATPase protein is associated with the phospholipid vesicles and that the Stoke's radius of the proteoliposomes formed is smaller than that of the lipid vesicles formed in the absence of any protein. The latter conclusion is supported by sedimentation velocity measurements and by an electron microscopic examination of negatively stained preparations. The electron microscopic studies demonstrate that sealed vesicles are formed only at low protein-to-lipid ratios. These observations indicate that the Acholeplasma laidlawii B (Na+ + Mg2+)-ATPase has been structurally and functionally reconstituted into lipid vesicles and that the proteoliposomes formed are amenable to studies aimed at the clarification of its proposed role as a sodium ion pump.  相似文献   

14.
Dispersions of a pure unsaturated phospholipid, dilinoleoylphosphatidyl choline, formed conjugated diene hydroperoxides when irradiated in air with 7 MeV electrons (150 Gy and 300 Gy). Peroxide formation was optimized when the dispersions were irradiated in air at 37 degrees C at a dose rate of 5 Gy/min. No significant loss of linoleic acid from the irradiated phospholipid dispersions was observed after doses of 150 or 300 Gy. Small amounts of thiobarbituric acid-reactive material were formed in irradiated unsaturated phospholipid dispersions. However, lipids or membranes isolated from 48 hour cultures of Acholeplasma laidlawii grown in media supplemented with either linoleic or linolenic acid did not appear to be peroxidized by irradiation under the same conditions.  相似文献   

15.
When chickens are infected with the coccidial parasite Eimeria necatrix, the plasma membrane of intestinal cells harbouring second-generation schizonts becomes refractory to mechanical shearing, hypotonic shock and ultrasonication. Plasma membrane from these infected cells was isolated to high purity as judged by enriched levels of ouabain-sensitive (Na+ + K+)-stimulated Mg2-dependent ATPase activity and sialic acid content, the lack of detectable cytochrome oxidase and glucose-6-phosphatase activities and electron microscopic analysis of the final preparation. Wide-angle X-ray diffraction patterns recorded from the isolated membranes revealed that during the later stages of parasite maturation the host cell plasma membrane acquires increasing proportions of gel-phase lipid. By contrast, purified membrane from isolated parasites is in a liquid-crystalline state. The transition temperature of host cell plasmalemma at 100 h postinfection is 61 degrees C, about 20 degrees C above physiological temperature. By contrast, liposomes of plasma membranes from infected cells undergo a thermal transition at about 28 degrees C. The accumulation of gel-phase lipid in the host cell plasma membrane is not attributable either to an increase in the constituent ratio of saturated to unsaturated fatty acids or to a significant change in the cholesterol to phospholipid ratio. During the late stages of infection, the cells become stainable with trypan blue which suggests that the acquisition of crystalline phase lipid disrupts the permeability of the host cell plasmalemma.  相似文献   

16.
We have investigated the effect of the interaction of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of model lipid bilayer membranes generated from the total membrane lipids of Acholeplasma laidlawii B and Escherichia coli. The A. laidlawii B membrane lipids consist primarily of neutral glycolipids and anionic phospholipids, while the E. coli inner membrane lipids consist exclusively of zwitterionic and anionic phospholipids. We show that the addition of GS at a lipid-to-peptide molar ratio of 25 strongly promotes the formation of bicontinuous inverted cubic phases in both of these lipid model membranes, predominantly of space group Pn3m. In addition, the presence of GS causes a thinning of the liquid-crystalline bilayer and a reduction in the lattice spacing of the inverted cubic phase which can form in the GS-free membrane lipid extracts at sufficiently high temperatures. This latter finding implies that GS potentiates the formation of an inverted cubic phase by increasing the negative curvature stress in the host lipid bilayer. This effect may be an important aspect of the permeabilization and eventual disruption of the lipid bilayer phase of biological membranes, which appears to be the mechanism by which GS kills bacterial cells and lysis erythrocytes.  相似文献   

17.
The purified (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes was successfully reconstituted with a number of different phospho- and glycolipids, and the ability of these lipids to support the function of this enzyme was evaluated by their ability to increase the specific activity of the purified enzyme and by their ability to restore its lipid-phase state-dependent properties which were lost during purification. The incorporation of this ATPase into liposomes composed of the endogenous membrane lipids of the organism, or of zwitterionic phospholipids such as phosphatidylcholine or phosphatidylethanolamine, results in a full reconstitution of its activity and its lipid-phase state-dependent properties. In contrast, anionic phospholipids alone, or in combination with zwitterionic phospholipids at concentrations higher than 10 mol % of the anionic phospholipid, cause an irreversible inhibition of this ATPase. However, when combined with neutral glycolipids, larger amounts of anionic phospholipid can be tolerated without enzyme inhibition. Phosphatidylcholines with acyl chains of 14-24 linear carbon atoms and varying degrees of branching and unsaturation successfully reconstitute the enzyme, in marked contrast to the shorter chain homologues, which were ineffective. Our results indicate that the full expression of the activity of the A. laidlawii B ATPase requires a host lipid bilayer membrane of low to moderate negative surface charge which is predominantly liquid-crystalline and of a minimal bilayer thickness. Once such requirements are met, the enzyme exhibits considerable flexibility regarding the nature of the lipids which can effectively support its function. In particular, the activity of the A. laidlawii B ATPase is not very sensitive to lipid "fluidity" in the liquid-crystalline state.  相似文献   

18.
Acholeplasma laidlawii, a mycoplasma, is unable to synthesize unsaturated fatty acids but it will incorporate them into its plasma membrane if they are supplied exogeneously. Thus the fatty acid composition of the cell membrane can be defined by growing the organism in media containing specific fatty acids. We obtained cells with predominantly one type of unsaturated fatty acid (either oleic, linoleic or linolenic acid) or cells with only saturated fatty acid in the cell membrane. The cells were irradiated with 7 MeV electrons and the effect of membrane fatty acid composition on cell survival was examined. At 200 Gy/min and 0.5 degrees C (melting ice) there was little difference in the radiation sensitivities of the cells grown in unsaturated fatty acids either in aerated or anoxic radiation conditions. However, the cells containing saturated fatty acids irradiated in anoxic conditions were markedly more sensitive than the cells containing unsaturated fatty acids. At 200 Gy/min and 37 degrees C the two types of cells were of similar sensitivity both in aerated and anoxic radiation conditions. At 5 Gy/min at 0.5 degrees C the cells containing linolenic acid (18:3) were less sensitive than those containing solely saturated fatty acids. However, at 5 Gy/min at 37 degrees C there was no difference in sensitivity between these two types of cell. Our results strongly argue against the involvement of lipid peroxidation as a molecular change leading to cell death.  相似文献   

19.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 degrees C was characterized by a decrease in phospholipid content relative to sterol content, a shift in phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes. Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 1/20 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 degrees C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (-10 degrees C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40-45 degrees C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0-35 degrees C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

20.
The specific binding of 125I-labelled low density lipoprotein ([125I]LDL to human adipocyte plasma membranes was higher at 37 than at 0 degree C. Prior treatment of membranes with pronase had no effect on LDL binding measured at 0 degree C but consistently stimulated binding at 37 degrees C. Plasmin was similar to pronase in enhancing LDL-specific binding, but thrombin was not as effective. 125I-labelled high density lipoprotein ([125I]HDL2) specific binding to human adipocyte plasma membranes was similarly sensitive to temperature and pronase treatment. Addition of the protease inhibitor aprotinin in the adipocyte membrane binding assay significantly reduced [125I]LDL binding at 37 degrees C (p less than 0.05), suggesting the involvement of a protease activity intrinsic to the lipoproteins and (or) membranes. These data demonstrate that both LDL and HDL binding in human adipocyte plasma membranes can be "up-regulated" by specific proteolytic perturbations in a temperature-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号