首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
Morris H. Baslow 《Amino acids》2010,39(5):1139-1145
N-acetylaspartate (NAA), an acetylated derivative of l-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and l-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the “operating system” of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.  相似文献   

2.
3.
The peptide transmitter N-acetylaspartylglutamate (NAAG) is present in millimolar concentrations in mammalian spinal cord. Data from the rat peripheral nervous system suggest that this peptide is synthesized enzymatically, a process that would be unique for mammalian neuropeptides. To test this hypothesis in the mammalian CNS, rat spinal cords were acutely isolated and used to study the incorporation of radiolabeled amino acids into NAAG. Consistent with the action of a NAAG synthetase, inhibition of protein synthesis did not affect radiolabel incorporation into NAAG. Depolarization of spinal cords stimulated incorporation of radiolabel. Biosynthesis of NAAG by cortical astrocytes in cell culture was demonstrated by tracing incorporation of [3H]-glutamate by astrocytes. In the first test of the hypothesis that NAA is an immediate precursor in NAAG biosynthesis, [3H]-NAA was incorporated into NAAG by isolated spinal cords and by cell cultures of cortical astrocytes. Data from cerebellar neurons and glia in primary culture confirmed the predominance of neuronal synthesis and glial uptake of NAA, leading to the hypothesis that while neurons synthesize NAA for NAAG biosynthesis, glia may take it up from the extracellular space. However, cortical astrocytes in serum-free low-density cell culture incorporated [3H]-aspartate into NAAG, a result indicating that under some conditions these cells may also synthesize NAA. Pre-incubation of isolated spinal cords and cultures of rat cortical astrocytes with unlabeled NAA increased [3H]-glutamate incorporation into NAAG. In contrast, [3H]-glutamine incorporation in spinal cord was not stimulated by unlabeled NAA. These results are consistent with the glutamate-glutamine cycle greatly favoring uptake of glutamine into neurons and glutamate by glia and suggest that NAA availability may be rate-limiting in the synthesis of NAAG by glia under some conditions.  相似文献   

4.
N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.  相似文献   

5.
N-acetyl-L-aspartic acid (NAA) is an amino acid present in the vertebrate brain that is synthesized and stored primarily in neurons, although it cannot be hydrolyzed in these cells. Nonetheless, neuronal NAA is dynamic and turns over more than once each day by cycling, via extracellular fluids (ECF), between neurons and catabolic compartments in oligodendrocytes. One important role of the NAA intercompartmental cycle appears to be osmoregulatory, and in this role it may be the primary mechanism for the removal of metabolic water, against a water gradient, from myelinated neurons. However, the number of water molecules that might be cotransported to ECF per NAA molecule released is as yet unclear. In this investigation, using a proton nuclear magnetic resonance method and diffusion measurements at two magnetic field strengths on water and NAA phantoms in vitro, the effect of NAA on the diffusion coefficient of water has been measured, and a ratio (K) of obligated water molecules per molecule of NAA has been determined. For NAA measured at 100mM and 3 Tesla K=24 and at 7 Tesla K=14. Based on these results, apparent K(NAA) varies inversely with field strength, and with a computed field strength factor of 2.55mmol water/unit Tesla, K(NAA) in the absence of any applied magnetic field strength would be 32.  相似文献   

6.
Canavan disease (CD) is a genetic degenerative brain disorder associated with mutations of the gene encoding aspartoacylase (ASPA). In humans, the CD syndrome is marked by early onset, hydrocephalus, macroencephaly, psychomotor retardation, and spongiform myelin sheath vacuolization with progressive leukodystrophy. Metabolic hallmarks of the disease include elevated N-acetylaspartate (NAA) levels in brain, plasma and CSF, along with daily excretion of large amounts of NAA and its anabolic metabolite, N-acetylaspartylglutamate (NAAG). Of the observed neuropathies, the most important appears to be the extensive demyelination that interferes with normal neuronal signaling. However, finding the links between the lacks of ASPA activity in oligodendrocytes, the buildup of NAA in white matter (WM) and the mechanisms underlying the edematous spongiform leukodystrophy have remained elusive. In this analytical review we consider what those links might be and propose that in CD, the pathological buildup of NAA in limited WM extracellular fluid (ECF) is responsible for increased ECF osmotic–hydrostatic pressure and initiation of the demyelination process. We also hypothesize that NAA is not directly liberated by neurons in WM as it is in gray matter, and that its source in WM ECF is solely as a product of the catabolism of axon-released NAAG at nodes of Ranvier by astrocyte NAAG peptidase after it has docked with the astrocyte surface metabotropic glutamate receptor 3. This hypothesis ascribes for the first time a possible key role played by astrocytes in CD, linking the lack of ASPA activity in myelinating oligodendrocytes, the pathological buildup of NAA in WM ECF, and the spongiform demyelination process. It also offers new perspectives on the cause of the leukodystrophy in CD, and on possible treatment strategies for this inherited metabolic disease. CD, a rare genetic disorder that compromises a physiologically important tri-cellular brain metabolic system.  相似文献   

7.
Molecular water pumps (MWPs) are characterized as biochemical systems existing at a compartmental boundary of living cells that can actively pump water against its gradient. A role for the observed intercompartmental transport of N-acetyl-L-aspartate (NAA), between neurons and oligodendrocytes in the CNS, as an efflux MWP for the removal of neuronal metabolic water has been proposed. In this review, accumulating evidence in support of such a role for NAA is presented, and the dynamics of the NAA cycle in myelinated neurons are considered. Based on the results of recent investigations, it is calculated that 1 mol of NAA is synthesized for every 40 mol of glucose (Glc) equivalent oxidized in the brain, and each mol of NAA may transport 121 mol of metabolic water out of neurons. In addition, turnover of total brain NAA is very rapid and appears to be only 16.7 h. Thus, the most important characteristic of NAA in the brain may not be its static level, but a dynamic aspect related to its rapid turnover. The relationship of NAA as a potential MWP to Canavan disease (CD), a genetic spongiform leukodystrophy in which the catabolic portion of the NAA cycle is deficient, and in a newly recognized brain disorder, hypoacetylaspartia, where the anabolic portion of the NAA cycle appears to be deficient, are discussed.  相似文献   

8.
The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.  相似文献   

9.
N-Acetylaspartate (NAA) is the second most abundant amino acid in the adult brain. It is located and synthesized in neurons and probably degraded in the glia compartment, but the transport mechanisms are unknown. Rat primary neuron and astrocyte cell cultures were exposed to the L isomer of [3H]NAA and demonstrated concentration-dependent uptake of [3H]NAA with a Km approximately 80 microM. However, Vmax was 23+/-6.4 pmol/mg of protein/min in astrocytes but only 1.13+/-0.4 pmol/mg of protein/min in neurons. The fact that neuron cultures contain 3-5% astrocytes suggests that the uptake mechanism is expressed only in glial cells. The astrocyte uptake was temperature and sodium chloride dependent and specific for L-NAA. The affinity for structural analogues was (IC50 in mM) as follows: L-NAA (0.12) > N-acetylaspartylglutamate (0.4) > N-acetylglutamate (0.42) > L-aspartate (>1) > L-glutamate (>1) > or = DL-threo-beta-hydroxyaspartate > N-acetyl-L-histidine. The naturally occurring amino acids showed no inhibitory effect at 1 mM. The glutamate transport blocker trans-pyrrolidine-2,4-dicarboxylate exhibited an IC50 of 0.57 mM, whereas another specific glutamate transport inhibitor, DL-threo-beta-hydroxyaspartate, had an IC50 of >1 mM. The experiments suggest that NAA transport in brain parenchyma occurs by a novel type of sodium-dependent carrier that is present only in glial cells.  相似文献   

10.
Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.  相似文献   

11.
To test the specificity of N-acetylaspartate (NAA) as a neuronal marker for proton nuclear magnetic resonance (1H NMR) spectroscopy, purified and characterized cultured cells were analyzed for their NAA content using both 1H NMR and HPLC. Cell types studied included cerebellar granule neurons, type-1 astrocytes, meningeal cells, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, and oligodendrocytes. A high concentration of NAA was found in extracts of cerebellar granule neurons (approximately 12 nmol/mg of protein), whereas NAA remained undetectable in purified type-1 astrocytes, meningeal cells, and mature oligodendrocytes. However, twice the neuronal level of NAA was found in O-2A progenitors grown in vitro. In addition significant levels of NAA were also detected in cultures of immature oligodendrocytes. Our data partly support previous suggestions that NAA may be a useful neuronal marker for 1H NMR spectroscopic examination of the adult brain. However, they also raise the further possibility that alterations of NAA associated with some specific brain disorders, particularly disorders seen in newborn and young children, may reflect abnormalities in the development of oligodendroglia or their precursors.  相似文献   

12.
The central nervous system (CNS) is considered a target structure for the action of all the classes of hormonal steroids produced by the organism. Well-characterized genomic and less well-understood membrane mechanisms of action are probably involved in the steroid modulation of brain activities. Moreover, some classes of steroids need to be converted into “active” metabolites before interacting with their effector systems. In particular, testosterone (T) exerts many of its effects after conversion to 5-dihydrotestosterone (DHT) and estrogens. The CNS possesses both the 5-reductase, the enzyme which produces DHT and the aromatase which transforms T into estrogens; however, the relative role and distribution of these enzymes in the various structural components of the CNS has not been clarified so far. The 5-reductase has been found to be present in high concentrations in brain white matter structures because these are particularly rich in myelin membranes, to which the enzymatic activity appears to be associated. This membrane localization might suggest a possible involvement of steroidal 5-reduced metabolites in membrane-mediated events in the CNS. Moreover, the distribution of 5-reductase was studied in neurons, astrocytes and oligodendrocytes isolated from the brain of male rats by density gradient ultracentrifugation, as well as in neurons and glial cells grown in culture. The aromatase activity was also evaluated in neurons and glial cells grown in culture and in isolated oligodendrocytes. Among the three cell types isolated, neurons appear to be more active than oligodendrocytes and astrocytes, respectively, in converting T into DHT. Also, in cell culture experiments, neurons are more active in forming DHT than glial cells. Only neurons possess aromatase activity, while glial cells are apparently unable to aromatize T.  相似文献   

13.
Glutathione-S-transferase Yb subunits were recently identified in rat brain and localized to astrocytes, ependymal cells lining the ventricles, subventricular zone cells, and tanycytes. Another isoform, Yp (pi family), was detected in rat brain by immunoblotting, and its mRNA was detected by Northern hybridizations. Double immunofluorescence localized Yb and Yp in different glial cells. The strongly Yp-positive cells were identified as oligodendrocytes by virtue of their arrangement in rows in white-matter tracts, colocalization in strongly carbonic anhydrase-positive cells, and association with myelinated tracts in the corpus striatum. Ependymal cells in the choroid plexus and ventricular lining were also strongly Yp positive, whereas Yb was not detected in the choroid plexus. The occurrence of Yp at low levels in astrocytes was indicated after immunostaining by a sensitive peroxidase-antiperoxidase method, which revealed weak staining of those cells in the molecular layer of the cortex. The data suggest that Yb and Yp subunits are primarily localized to astrocytes and oligodendrocytes, respectively, and that both are absent from neurons. The glutathione-S-transferase in oligodendrocytes may participate in the removal of toxins from the vicinity of the myelin sheath. The finding of glutathione-S-transferases in ependymal cells and astrocytes in the brain also suggests that this enzyme could be a first line of defense against toxic substances.  相似文献   

14.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

15.
The function of N-acetyl-aspartate (NAA), a predominant molecule in the brain, has not yet been determined. However, NAA is commonly used as a putative marker of viable neurones. To investigate the possible function of NAA, we determined the anatomical, developmental and cellular distribution of aspartoacylase, which catalyses the hydrolysis of NAA. Levels of aspartoacylase activity were measured during postnatal development in several brain regions. The differential distribution of aspartoacylase activity in purified populations of cells derived from the rat CNS was also investigated. The developmental and anatomical distribution of aspartoacylase correlated with the maturation of white matter tracts in the rat brain. Activity increased markedly after 7 days and coincided with the time course for the onset of myelination in the rat brain. Gray matter showed little activity or developmental trend. There was a 60-fold excess in optic nerve (a white matter tract) when compared with cortex at 21 days of development. In the adult brain there was a 18-fold difference in corpus callosum compared with cortex (stripped of corpus callosum). Cellular studies demonstrated that purified cortical neurons and cerebellar granular neurones have no activity. Primary O-2A progenitor cells had moderate activity, with three-fold higher activity in immature oligodendrocyte and 13-fold increase in mature oligodendrocytes (myelinating cells of the CNS). The highest activity was seen in type-2 astrocytes (20-fold difference compared with O-2A progenitors) derived from the same source. Aspartoacylase activity increased with time in freshly isolated astrocytes, with significantly higher activity after 15 days in culture. We conclude that aspartoacylase activity in the developing postnatal brain corresponds with maturation of myelination, and that the cellular distribution is limited to glial cells.  相似文献   

16.
The effect of L-glutamate, kainate and N-methyl-D-aspartate (NMDA) on membrane currents of astrocytes, oligodendrocytes and their respective precursors was studied in acute spinal cord slices of rats between the ages of postnatal days 5 and 13 using the whole-cell patch-clamp technique. L-glutamate (10(-3) M), kainate (10(-3) M), and NMDA (2x10(-3) M) evoked inward currents in all glial cells. Kainate evoked larger currents in precursors than in astrocytes and oligodendrocytes, while NMDA induced larger currents in astrocytes and oligodendrocytes than in precursors. Kainate-evoked currents were blocked by the AMPA/kainate receptor antagonist CNQX (10(-4) M) and were, with the exception of the precursors, larger in dorsal than in ventral horns, as were NMDA-evoked currents. Currents evoked by NMDA were unaffected by CNQX and, in contrast to those seen in neurones, were not sensitive to Mg2+. In addition, they significantly decreased during development and were present when synaptic transmission was blocked in a Ca2+-free solution. NMDA-evoked currents were not abolished during the block of K+ inward currents in glial cells by Ba2+; thus they are unlikely to be mediated by an increase in extracellular K+ during neuronal activity. We provide evidence that spinal cord glial cells are sensitive to the application of L-glutamate, kainate and transiently, during postnatal development, to NMDA.  相似文献   

17.
Arellano  Jon I.  Morozov  Yury M.  Micali  Nicola  Rakic  Pasko 《Neurochemical research》2021,46(10):2512-2524
Neurochemical Research - Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as...  相似文献   

18.
We examined the role of Notch signaling on the generation of neurons and glia from neural stem cells by using neurospheres that are clonally derived from neural stem cells. Neurospheres prepared from Dll1(lacZ/lacZ) mutant embryos segregate more neurons at the expense of both oligodendrocytes and astrocytes. This mutant phenotype could be rescued when Dll1(lacZ/lacZ) spheres were grown and/or differentiated in the presence of conditioned medium from wild-type neurospheres. Temporal modulation of Notch by soluble forms of ligands indicates that Notch signaling acts in two steps. Initially, it inhibits the neuronal fate while promoting the glial cell fate. In a second step, Notch promotes the differentiation of astrocytes, while inhibiting the differentiation of both neurons and oligodendrocytes.  相似文献   

19.
The endogenous neuropeptide N-acetyl-L-aspartyl-L-glutamate (NAAG) fulfills several criteria required to be accepted as a neurotransmitter. NAAG inactivation may proceed through enzymatic hydrolysis into N-acetyl-L-aspartate and glutamate by an N-acetylated-alpha-linked acidic dipeptidase (NAALADase). Therefore, some properties of NAALADase activity were investigated using crude membranes from the rat forebrain. Kinetic parameters of the hydrolysis of [Glu-3H]NAAG were determined first (Km = 0.40 +/- 0.05 microM; Vmax = 155 +/- 20 pmol/min/mg of protein). The enzymatic activity, i.e., NAALADase, was inhibited noncompetitively by the glutamatergic agonist quisqualate (Ki = 1.9 +/- 0.3 microM), and competitively by N-acetyl-L-aspartyl-beta-linked L-glutamate (beta-NAAG; Ki = 0.70 +/- 0.05 microM). To determine whether glutamate-containing dipeptides, such as NAAG, beta-NAAG, N-acetyl-L-aspartyl-D-glutamate, L-aspartyl-L-glutamate, L-alanyl-L-glutamate, L-glutamyl-L-glutamate, and L-glutamyl-gamma-linked L-glutamate, were substrates of NAALADase, rat brain membranes were immobilized on a C-8 column. Thus, endogenous trapped glutamate was washed away and formation of unlabelled glutamate could be estimated using an o-phthaldialdehyde/reverse-phase HPLC detection procedure. beta-NAAG was shown to be a nonhydrolyzable competitive inhibitor of NAALADase. L-Aspartyl-L-glutamate was hydrolyzed faster than NAAG, suggesting that the acetylated moiety is not essential for NAALADase specificity. Rat brain membranes also contained nonspecific peptidase activities (insensitive to both quisqualate and beta-NAAG), which, in the case of L-alanyl-L-glutamate, for instance, accounted for all observed hydrolysis.  相似文献   

20.
Glial cells of the cerebellum originate from cells of the ventricular germinative layer, but their lineage has not been fully elucidated. For studying the glial cell lineage in vivo by retrovirus-mediated gene transfer, we introduced a marker retrovirus into the ventricular germinative layer of embryonic day 13 mice. In the resulting adult cerebella, virus-labeled glial cells were grouped in discrete clusters, and statistical analysis showed that these clusters represented clones in high probability. Of 71 of the virus-labeled glial clusters, 33 clusters were composed of astrocytes/Bergmann glia, 10 were composed of only white matter astrocytes, and 24 were composed of only oligodendrocytes. No glial clusters contained virus-labeled neurons. These results suggest that astrocytes/Bergmann glia, white matter astrocytes and oligodendrocytes immediately arise from separate glial precursors: these three glial lineages may diverge in the course of cerebellar development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号