首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Somatostatin has been shown to inhibit the release of various polypeptide hormones including insulin, glucagon, gastrin, thyroid stimulating hormone, and growth hormone. The mechanism by which somatostatin inhibits the release of these various polypeptide hormones has not been fully eluciadated. It has been reported that somatostatin increases the level of the second messenger cyclic GMP in rat brain and in the anterior pituitary gland. The present investigation was designed to determine if these responses seen in the anterior pituitary gland and brain were due to activation of guanylate cyclase GTP-pyrophosphate lyase (cyclizing), E.C.4.6.1.2., the enzyme that catalyzes the formation of cyclic GMP. Somatostatin at a concentration of 2 pm enhanced guanylate cyclase activity two-fold in rat cerebrum and anterior pituitary gland. This enhancement of guanylate cyclase activity was also seen in rat liver, pancreas, stomach, and small intestine at the same concentration of somatostatin. Increasing the concentration of somatostatin to 20 m, caused a marked inhibition of guanylate cyclase activity in all these tissues. Dose-response curves done on gastric guanylate cyclase activity revealed that over a concentration range of 2 pm to 0.2 m, somatostatin had a stimulatory effect on guanylate cyclase activity while at concentrations above 10 m somatostatin was inhibitory to guanylate cyclase activity. The biphasic pattern of enhancement of guanylate cyclase activity at lower concentrations of somatostatin and inhibition at higher concentrations may help to explain some of the discrepancies seen with previous investigations with somatostatin, hormone release, and cyclic nucleotide metabolism.  相似文献   

2.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

3.
The effect of prostaglandin E1 (PGE1) on rat anterior pituitary cyclic AMP accumulation and luteinizing hormone (LH) release was studied both in vivo and in vitro. Addition of PGE1 to incubation medium over a concentration range of 10-6 to 10-4 M produced a graded increase in pituitary cyclic AMP. At the lowest concentration (10-6 M) there was no significant increase in LH release, but proportional increments in LH release were seen with increasing concentrations of PGE1.Ten minutes after intravenous administration of 5 μg of PGE1 to adult male rats, pituitary cyclic AMP was substantially increased while serum LH levels were not changed. Administration of a higher dose of PGE1 (20 μg) produced a greater increase in pituitary cyclic AMP; and, at this dose serum LH was significantly increased. These results suggest that the PGE1 effect on LH release is mediated by the adenyl cyclase — cyclic AMP system.  相似文献   

4.
The studies reported here confirm the previously observed potent stimulus to growth hormone (GH) secretion by prostaglandin E1 (PGE1). Proportional increments in GH secretion were observed following in vitro addition of PGE1 over a concentration range of 10?7 to 10?5 M. Growth hormone secretion could not be further stimulated by higher concentrations of prostaglandin. Prostaglandin E1 also increased cyclic AMP concentration in the pituitary explants in a proportional fashion, which correlated closely with its potency as a growth hormone secretogogue. In order to define more precisely the mechanism by which prostaglandin acts, the effects of prostaglandin antagonist, 7-oxa-13-prostynoic acid, on GH secretion and cyclic AMP accumulation were investigated. Addition of the antagonist alone had no consistent effects on GH secretion or cyclic AMP levels in the pituitary. However, the antagonist significantly reduced the stimulation of hormone release and cyclic AMP accumulation found following addition of PGE1. Increasing the concentration of antagonist further diminished prostaglandin stimulated hormone release and nucleotide accumulation. The antagonist failed to block the stimulatory effects of theophylline and dibutyryl cyclic AMP on GH release, indicating that the inhibition observed occurred prior to intracellular accumulation of the cyclic nucleotide. These results are consistent with the hypothesis that a prostaglandin receptor on the pituitary somatotrope is linked to the adenyl cyclase-cyclic AMP system.  相似文献   

5.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

6.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

7.
Potassium and norepinephrine stimulate the accumulation of cyclic AMP and cyclic GMP in rat pineal glands and their efflux into the medium. The efflux of both cyclic nucleotides was blocked by probenecid. The accumulation and efflux of cyclic GMP, but not of cyclic AMP, depends upon the presence of intact nerve endings and extracellular calcium. The calcium-dependent release of norepinephrine caused by veratridine was accompanied by the efflux of both cyclic AMP and cyclic GMP. In contrast, the calcium-independent release of norepinephrine caused by tyramine was accompanied by the efflux of cyclic AMP but not cyclic GMP. Changes in cyclic GMP therefore, may be related to exocytosis from the sympathetic nerve endings in the gland. High concentrations of potassium also increased tissue levels of cyclic GMP in the posterior pituitary gland. Veratridine and potassium, but not norepinephrine, stimulated the efflux of cyclic GMP from this neurosecretory gland. Thus, the relationship between cyclic GMP and exocytosis may extend beyond sympathetic nerve endings. The enhanced accumulation of cyclic GMP in the pineal gland after potassium does not appear to be mediated by extracellular (released) norepinephrine. Desmethylimipramine blocked the norepinephrine-stimulated changes in cyclic GMP, but not those caused by potassium. Investigation of the possible relationship between cyclic GMP and release of neurotransmitters is complicated by the apparent seasonal variation in the response of pineal cyclic GMP to potassium or norepinephrine.  相似文献   

8.
In a clonal strain of rat pituitary tumour cells (GH4C1 cells), thyroliberin stimulated prolactin secretion and synthesis: effects that could be demonstrated after 5 min and 4–5 h of treatment, respectively. Within 0.5–5 min after addition of thyroliberin, maximal increases (2–4 hold) in cellular cyclic GMP concentrations were observed, and this rise preceded or occurred simultaneously with that of cyclic AMP. After 60 min of treatment the concentrations of the cyclic nucleotides had returned to control values. Half maximal and maximal stimulation of cyclic GMP elevations were obtained with approx. 2·109 and approx. 27·10?9 thyroliberin, respectively. Aminophylline increased both cyclic GMP and cyclic AMP, and potentiated the stimulatory effects of thyroliberin on both cyclic nucleotides. The dibutyryl derivative of cyclic GMP (10?4–10?6 M) stimulated prolactin synthesis, but not hormone release. Prostaglandin E2 (3·10?7 M) stimulated cellular cyclic AMP concentrations, but did not affect cyclic GMP levels. We conclude that thyroliberin in the GH4C1 ccell strain stimulates cyclic GMP formation, in addition to elevate cyclic AMP concentrations. The stimulatory effect on cyclic GMP is probably not secondary to the rise in cyclic AMP concentration, since prostaglandin E2 elevates only cyclic GMP is involved in the action of thyroliberin on prolactin, the present results suggest a role on hormone synthesis.  相似文献   

9.
The effect of synthetic somatostatin on insulin release was studied in vitro by using isolated islets of rats. Somatostatin, with concentrations from 10 ng/ml to 10μg/ml, inhibited insulin release induced by 16.7 mM glucose. Insulin release elicited by 10 μg/ml glucagon or 2 mM dibutyryl cyclic AMP was likewise inhibited by 100ng/ml somatostatin. By raising the calcium concentration of the incubation medium to 6 mM, glucose-induced insulin release was fully restored even in the presence of somatostatin.However, the same maneuver only partially counteracted the somatostatin inhibition of dibutyryl cyclic AMP-induced insulin release. These results suggest the involvement of calcium mobilization process in the inhibitory action of somatostatin.  相似文献   

10.
G J Law  K P Ray  M Wallis 《FEBS letters》1985,179(1):12-16
Human pancreatic growth hormone-releasing factor (GRF-44-NH2) stimulated growth hormone (GH) secretion and intracellular cyclic AMP levels in cultured pituitary cells from both sheep and rat. Somatostatin (SRIF), over a wide range of doses and time, showed no significant effect on the elevated cyclic AMP levels in sheep cells, but did block the GH release in a dose-dependent manner. In rat cells, however, SRIF inhibited GRF-stimulated cyclic AMP levels by 75% maximum (still 8-fold greater than the basal levels) and GH release to almost half the basal value. We conclude that somatostatin inhibits GRF-elevated cyclic AMP levels in rat pituitary cells but not in sheep cells.  相似文献   

11.
The effect of thyrotrophin releasing hormone (TRH) or human pancreatic growth hormone releasing factor (hpGRF) on growth hormone (GH) release was studied in both dwarf and normal Rhode Island Red chickens with a similar genotype except for a sex-linked dw gene. Both TRH (10 micrograms/kg) and hpGRF (20 micrograms/kg) injections stimulated plasma GH release within 15 min in young and adult chickens. The increase in GH release was higher in young cockerels than that in adult chickens. The age-related decline in the response to TRH stimulation was observed in both strains, while hpGRF was a still potent GH-releaser in adult chickens. The maximal and long acting response was observed in young dwarf chickens, suggesting differences in GH pools releasable by TRH and GRF in the anterior pituitary gland. The pituitary gland was stimulated directly by perifusion with hpGRF (1 microgram/ml and 10 micrograms/ml) or TRH (1 microgram/ml). Repeated perifusion of GRF at 40 min intervals blunted further increase in GH release, but successive perifusion with TRH stimulated GH release. The results suggest the possibility that desensitization to the effects of hpGRF occurs in vitro and that the extent of response depends on the number of receptors for hpGRF or TRH and/or the amount of GH stored in the pituitary gland.  相似文献   

12.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

13.
This study evaluated the relationship between LH, cyclic AMP, cyclic GMP, and testosterone using in vitro incubation of decapsulated rat testes and sampling incubation medium. With added LH (1.0, 5.0, 100, and 500 mIU/ml) there were statistically significant increases in cyclic AMP at 5 mIU/ml or more LH, and progressively greater titers of this nucleotide were produced as LH was increased. For cyclic GMP all levels of added LH caused significant increments in titers of nucleotide; however, peak cyclic GMP concentrations occurred with 5 mIU/ml of LH. The addition of 10(-3) and 10-(4)M 8-bromo-cyclic AMP caused significant increases in testosterone production, while no changes in production of this androgen were found with 10(-3), 10(-4), or 10(-5)M 8-bromo-cyclic GMP. Neither cyclic AMP nor cyclic GMP titers were altered by the addition of 1 to 50 micrograms/ml of testosterone to medium bathing the rat testes. The dose response curves of cyclic AMP and cyclic GMP to LH are different. Progressive increments in added LH cause parallel increases of cyclic AMP and a biphasic change of cyclic GMP, 8-bromo-cyclic GMP does not cause testosterone generation, suggesting that cyclic GMP does not result in androgen synthesis. However, cyclic GMP may be involved in other Leydig cell functions.  相似文献   

14.
R S Boyd  M Wallis 《FEBS letters》1989,251(1-2):99-103
Tetradecanoyl phorbol acetate (TPA) stimulates growth hormone (GH) and prolactin secretion from ovine anterior pituitary cells. Pretreatment of the cells with TPA abolishes this effect, presumably due to down-regulation of protein kinase C. Such pretreatment did not alter effects of thyrotropin-releasing hormone or dopamine on prolactin secretion, suggesting no involvement of protein kinase C. Pretreatment with TPA attenuated actions of GH-releasing hormone on GH release (but not actions on cyclic AMP levels), possibly due to depletion of cellular stores of GH. Such pretreatment also attenuated inhibition of GH release by somatostatin, possibly due to phosphorylation of receptors or associated proteins by protein kinase C.  相似文献   

15.
Specificity of the effect of prostaglandins (PGs) on hormone release by the anterior pituitary gland was studied using cells in primary culture. Growth hormone (GH) release is stimulated by all eight PGs studied, PGE1 and E2 being 1000-fold more potent than the corresponding PGFs. The release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) remains unchanged upon addition of PGEs. While the basal release of thyrotropin (TSH) is only slightly stimulated by concentrations of PGEs above 10−6M, an important potentiation of the stimulatory effect of thyrotropin-releasing hormone on TSH release is observed. The release of GH, TSH and LH is stimulated equally well by PGAs and PGBs at concentrations higher than 10−6M, 3 × 10−6M, and 10−5M, respectively. PGFs do not affect the release of any of the measured pituitary hormones at concentrations below 10−4M. The stimulation of GH release by PGE2 can be inhibited by the PG antagonist 7-oxa-13-prostynoic acid, a half-maximal inhibition being found at a concentration of 4 × 10−5M of the antagonist in the presence of 10−6M PGE2. In the presence of somatostatin (10−8M), the inhibition of GH release cannot be reversed by PGE2 at concentrations up to 10−4M. 8-bromo-cyclic AMP-induced GH release is additive with that produced by PGE2.The present data show that 1) of the five pituitary hormones measured, only GH release is stimulated by prostaglandins at relatively low concentrations, 2) the PGE-induced GH release can be competitively inhibited by 7-oxa-13-prostynoic acid, 3) the inhibition of GH release by somatostatin cannot be reversed by PGE2 and 4) the PGEs increase the responsiveness of the thyrotrophs to TRH.  相似文献   

16.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

17.
In an attempt to study the site and mechanism of action of estrogen in producing positive feedback control, porcine anterior pituitary slices were incubated in vitro in the presence of estradiol benzoate (EB). EB elevated pituitary cyclic AMP concentration within 5 min and augmented pituitary release of luteinizing hormone (LH). The magnitude of increase of cyclic AMP and LH release was related to the doses of EB used. Also, luteinizing hormone releasing hormone (LH-RH) elevated pituitary cyclic AMP concentration and stimulated pituitary release of LH. The magnitude of increase of cyclic AMP and LH release was inversely related to the doses of LH-RH used. EB and LH-RH were additive in increasing cyclic AMP. Progesterone and clomiphene citrate interfered with an increase of pituitary cyclic AMP produced by EB, but did not significantly affect the basal level of pituitary cyclic AMP. Testosterone propionate, human chorionic gonadotropin and hexestrol were without effect on either basal or stimulated level of pituitary cyclic AMP. Since cyclic AMP and dibutyryl cyclic AMP (DBC) stimulated LH release, it is suggested that EB directly stimulates the release of LH by augmenting cyclic AMP synthesis in the anterior pituitary.  相似文献   

18.
Cyclic-AMP phosphodiesterase activity in the homogenate of the anterior pituitary gland was 2-fold higher than that in the homogenate of the posterior pituitary, whereas cyclic-GMP phosphodiesterase activity was dominant in the posterior homogenate. There were two peaks of cyclic-AMP phosphodiesterase activity with different isoelectric points of 4.3 and 5.2. Fraction I had a molecular weight of 240 000 and a sedimentation coefficient of 6.2 S; fraction II had a molecular weight of 180 000 and a sedimentation coefficient of 3.1 S. Cyclic AMP hydrolytic activity in the supernatant of the posterior lobe corresponded to fraction I in the anterior lobe. Cyclic GMP hydrolytic activity in both the anterior and posterior lobes (activated by Ca2+ / calmodulin) had an isoelecteric point of 5.2, a molecular weight of 240 000 and a sedimentation coefficient of 6.2 S. Cyclic AMP and GMP hydrolytic activities in both the anterior and posterior lobes appeared in fraction I and did not separate when the preparations were mixed before electric focusing or sucrose density gradient procedures. Cyclic AMP hydrolytic activity in fraction II could be separated from cyclic GMP hydrolytic activity.  相似文献   

19.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

20.
Cyclic-AMP phosphodiesterase activity in the homogenate of the anterior pituitary gland was 2-fold higher than that in the homogenate of the posterior pituitary, whereas cyclic-GMP phosphodiesterase activity was dominant in the posterior homogenate. There were two peaks of cyclic-AMP phosphodiesterase activity with different isoelectric points of 4.3 and 5.2. Fraction I had a molecular weight of 240 000 and a sedimentation coefficient of 6.2 S; fraction II had a molecular weight of 180 000 and a sedimentation coefficient of 3.1 S. Cyclic AMP hydrolytic activity in the supernatant of the posterior lobe corresponded to fraction I in the anterior lobe. Cyclic GMP hydrolytic activity in both the anterior and posterior lobes (activated by Ca2+/calmodulin) had an isoelectric point of 5.2, a molecular weight of 240 000 and a sedimentation coefficient of 6.2 S. Cyclic AMP and GMP hydrolytic activities in both the anterior and posterior lobes appeared in fraction I and did not separate when the preparations were mixed before electric focusing or sucrose density gradient procedures. Cyclic AMP hydrolytic activity in fraction II could be separated from cyclic GMP hydrolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号