首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In the United States, the regulatory approach to wetland protection has a traditional focus on size as a primary criterion, with large wetlands gaining significantly more protection. Small, isolated wetlands have received less protection; however, these wetlands play a significant role in the maintenance of biodiversity of many taxonomic groups, including amphibians. An important question for directing conservation and management efforts for amphibians is whether size is a useful criterion for regulatory decisions. Because hydroperiod has an important influence on amphibian composition in wetlands, I conducted a study to examine the relative influence of wetland size and hydroperiod on amphibian occurrence. I sampled 103 wetlands in southern New Hampshire in 1998 and 1999 using dipnet sampling to document the presence of larval amphibians. Wetlands were placed into one of three hydroperiod categories; short (<4 months), intermediate (4–11 months), or long (permanent) based on field observations of drying pattern. Wetland size was determined from digitized national wetland inventory (NWI) maps (most wetlands) or measured in the field. I examined patterns of amphibian species richness and individual species occurrence using generalized linear models. Wetland size ranged from 0.01 to 3.27 ha. Overall, species richness was significantly influenced by hydroperiod (χ2 = 18.6, p <0.001), but not size (χ2 = 1.4, p = 0.24). Examination within hydroperiod categories revealed several significant relationships with wetland size. Species richness was related to wetland size in wetlands with short and intermediate hydroperiods, but not wetlands with long hydroperiods. Wetland size does not appear to be a useful sole criterion for determining wetland functional value for amphibians; assessments of functions of seasonally inundated wetlands for amphibians would benefit from examination of hydroperiod.  相似文献   

2.
3.
Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species.  相似文献   

4.
We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional‐basin wetland: forested swamps and herbaceous‐vegetation marshes. In west‐central Florida, >650 ML groundwater day?1 are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50–60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m2 through 30.5 cm depth was diminished by 25–30% in short‐hydroperiod swamps. In herbaceous‐vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining‐reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand.  相似文献   

5.
ABSTRACT Beaver (Castor canadensis) activity creates wetland habitats with varying hydroperiods important in maintaining habitat diversity for pond-breeding amphibians with significantly different breeding habitat requirements. We documented pond-breeding amphibian assemblages in 71 freshwater wetlands in Acadia National Park, Maine, USA. Using 15 variables describing local pond conditions and wetland landscape characteristics, we developed a priori models to predict sites with high amphibian species richness and used model selection with Akaike's Information Criterion to judge the strength of evidence supporting each model. We developed single-species models to predict wood frog (Rana sylvatica), bullfrog (R. catesbeiana), and pickerel frog (R. palustris) breeding site selection. Sites with high species richness were best predicted by 1) connectivity of wetlands in the landscape through stream corridors and 2) wetland modification by beaver. Wood frog breeding habitat was best predicted by temporary hydroperiod, lack of fish, and absence of current beaver activity. Wood frog breeding was present in abandoned beaver wetlands nearly as often as in nonbeaver wetlands. Bullfrog breeding was limited to active beaver wetlands with fish and permanent water. Pickerel frog breeding sites were best predicted by connectivity through stream corridors within the landscape. As beavers have recolonized areas of their former range in North America, they have increased the number and diversity of available breeding sites in the landscape for pond-breeding amphibians. The resulting mosaic of active and abandoned beaver wetlands both supports rich amphibian assemblages and provides suitable breeding habitat for species with differing habitat requirements. Land managers should consider the potential benefits of minimal management of beavers in promoting and conserving amphibian and wetland diversity at a landscape scale.  相似文献   

6.
The effects of variable hydroperiod (three levels) and initial density of amphibians (two levels) on survival, growth rate, and time to and mass at metamorphosis were studied for wood frogs (Rana sylvatica), Jefferson salamanders (Ambystoma jeffersonianum), and spotted salamanders (A. maculatum). Experiments were carried out in 260-1 mesocosms set up outdoors in a forest. These pond simulations were designed to mimic conditions that occur in palustrine temporary wetlands in central Pennsylvania. No animals reached metamorphosis in the short hydroperiod (56 days). However a greater proportion (66%) of tadpoles of R. sylvatica survived to the end of the 56-day, treatment than the 84- or 158-day treatments (29 and 14%, respectively), from which all survivors metamorphosed. In contrast, neither of the salamanders metamorphosed by 84 days; survival to metamorphosis at 158 days was 15% for A. jeffersonianum and 10% for A. maculatum. Average instantaneous growth rates for A. jeffersonianum decreased with each increase in hydroperiod. Growth of R. sylvatica was greater in the 56-day hydroperiod than in hydroperiods of 84 or 158 days. Initial amphibian density had no effect on growth or survival of any species. It appears that salamander larvae were predatory on tadpoles, since survival of R. sylvatica was negatively correlated with survival of A. jeffersonianum in 84-day treatments and with growth of A. maculatum in 158-day treatments.  相似文献   

7.
The hydrologic character of wetlands is one of the attributes by which they are defined. There are, however, conflicting reports about the detrimental versus beneficial responses of wetland systems to water level fluctuations and variable hydroperiods. We conducted water level and hydroperiod fluctuation studies in full-scale experimental wetlands in order to determine the effects of hydraulic operation on wetland performance (in terms of nutrient removal), and benthic-bacterial community function (in terms of denitrification potential, DNP) and structure (via terminal restriction fragment length polymorphisms, T-RFLP). In our comparison, detention time was the controlling factor for nitrate removal at the system level. However, widely fluctuating water levels and variable hydroperiods did not diminish either the nitrate removal capacity of the experimental wetlands, or the size or composition of benthic-bacterial communities relative to the more stable water level systems. Rather, significant differences in denitrification potential rates, bacterial cell densities, and benthic community structure were a function of sampling location within the experimental wetlands regardless of hydraulic operation. The results of this study support the need for reconsidering the hydraulic criteria for wetland delineation.  相似文献   

8.
Determining the mechanisms responsible for the success of invasive species is critical for developing effective management strategies. Artificially draining managed wetlands to maintain natural ephemeral conditions is a common practice in the Pacific Northwest and is assumed to kill invasive American bullfrog (Lithobates catesbeianus) larvae, which typically overwinter in permanent wetlands before metamorphosis. Bullfrogs in the Willamette Valley, Oregon, however, have invaded ephemeral wetland sites with confirmed metamorphosis within 4 months after hatching at 1 site. We hypothesized that plasticity in growth and development rates in response to hydroperiod facilitated bullfrog invasion in Oregon. We tested this hypothesis by quantifying larval bullfrog development and growth in response to 3 hydroperiod conditions in a mesocosm setting. We tested clutches collected from both ephemeral (n = 3) and permanent (n = 3) wetlands. We found no differences in development or growth due to hydroperiod treatments (body length, P = 0.48; mass, P = 0.27), but we found differences in growth among clutches (P ≤ 0.001). These differences likely represent natural variation in growth rates because clutches collected from the same wetland type did not respond with similar growth and geographic barriers between collection sites did not account for the differences. These results indicate a lack of plasticity to hydroperiod and suggest that artificial hydroperiod manipulation in the Pacific Northwest will not induce rapid metamorphosis by invasive bullfrog larvae, although some genotypes may be capable of rapid growth and metamorphosis. © 2013 The Wildlife Society.  相似文献   

9.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

10.
Abstract: Wetlands in the Playa Lakes Region (PLR) provide important habitats for wintering waterfowl, cranes, and both migrant and breeding shorebirds. Playa Lakes Region wetlands experience naturally fluctuating hydroperiods but are exposed to anthropogenic stresses, which are exacerbated during summer and may influence PLR wetland occupancy and selection by breeding shorebirds. We examined wetland-scale habitat use and nest-site selection of the 4 dominant shorebirds (American avocets [Recurvirostra americana], black-necked stilts [Himantopus mexicanus], killdeer [Charadrius vociferus], snowy plovers [C. alexandrinus]) nesting in playas, saline lakes, and in both created and riparian wetlands in the PLR of Texas, USA. All 4 species nested in saline lakes. Only avocets and killdeer nested in playas, and snowy plovers nested in riparian wetlands. No nests were found in created wetlands. Wetland habitat changed (P < 0.001) during the breeding season, while water habitats generally decreased. Used (i.e., shorebirds found nesting) wetlands had more (P < 0.05) mudflats than non-used (i.e., shorebirds not found nesting) wetlands, which had more (P < 0.05) dry habitats. Used and non-used wetlands had similar (P > 0.05) amounts of water habitats. Nests were located close to vegetation on bare dry ground and dry ground with vegetation. Because water is ephemeral in PLR wetlands, shorebirds must select—in a somewhat predictive manner upon arrival—wetlands with suitable nest-site and brood-rearing habitat. Although surface water is necessary for nesting, its presence is not adequate for delineating suitable PLR wetland habitat for breeding shorebirds. Our findings that created wetlands cannot compensate for regional wetland losses in habitat or function highlights the need for conservation of natural PLR wetlands  相似文献   

11.
In New England, seasonal forest ponds provide primary breeding habitat for several amphibian species, including Rana sylvatica (LeConte) and Ambystoma maculatum (Shaw). Because each species requires a minimum duration of inundation to complete its breeding cycle, one of the most important factors determining habitat suitability is a pond’s hydroperiod. The objective of this research was to develop a method for estimating pond hydroperiod from site characteristics such as pond morphology, geology, chemistry, and vegetation structure, and to use the estimates to assess the suitability of individual ponds for breeding amphibians. We monitored the duration of surface inundation in 65 ponds in the Pawcatuck River watershed of southern Rhode Island during 2001 and 2002. Pond hydroperiods, measured from 1 March, ranged from 19 to 44 weeks in 2001 and from 2 to 44 weeks in 2002; mean values were 30 and 21 weeks, respectively. Akaike’s Information Criterion was used to select a multivariate hydroperiod estimation model (R2 = 0.59, p < 0.0001) that permitted identification of ponds with hydroperiods suitable for breeding by R. sylvatica (95.4% correct classification rate [CCR]) and A. maculatum (75.4% CCR). Canopy cover, open basin depth, and specific conductance of surface water were among the most useful site characteristics for estimating hydroperiod, while surficial geology and the texture of soil parent material made smaller contributions. The CCR using open basin depth alone was 95.4 and 73.8%, respectively. These findings indicate that it is possible to estimate the hydroperiod of seasonal ponds – and to assess their suitability for individual species of breeding amphibians – without prolonged periods of hydrologic monitoring. Such techniques could have considerable value to wetland regulatory agencies and for planning amphibian habitat management and acquisition at the landscape scale.  相似文献   

12.
Wetlands are among the most threatened ecosystems worldwide due to climate change and land-use conversion. Regional biodiversity of temporary wetlands is dependent on the existence of habitat complexes with variable hydroperiods. Because temperature and rainfall regimes are predicted to shift globally, together with land-use patterns, different scenarios of wetland loss are expected in the future. To understand how wetland biodiversity might change in the future, it is important to evaluate how the loss of particular hydroperiods will affect overall diversity in a region. Using invertebrate datasets from five wetland complexes distributed across South and North America, we calculated beta diversity metrics for each region. Then we contrasted those metrics to simulations of sequential deletions of subsets (30%) of the long-, moderate- and short-hydroperiod wetlands to assess which wetland class would most affect invertebrate beta diversity in each region. Deletions of the short-hydroperiod wetlands led to the most significant decline in beta diversity. However, deletion effects of different wetland classes varied across study regions, with a negative correlation existing between deletions of the long- and short-hydroperiod wetlands on invertebrate beta diversity. Our simulations indicate that loss of short-hydroperiod wetlands will have the most significant effects on invertebrate beta diversity, but loss of long-hydroperiod wetlands will also be important. Thus, wetlands from both hydroperiod extremes should be considered when assessing potential biodiversity declines associated with habitat loss.  相似文献   

13.
Assemblages exhibit nested distributional patterns if the species found in species-poor locations also occur in progressively richer locations. We investigated patterns of nestedness in assemblages of larval amphibians and predatory macroinvertebrates in 42 isolated freshwater wetlands in southern New Hampshire, USA. These wetlands varied markedly in hydroperiod and we predicted that nestedness would be relatively weak because changes in disturbance processes (the relative threat of desiccation and predation) along the hydroperiod gradient often generate distinct assemblages. Contrary to expectations we found that both amphibian and macroinvertebrate assemblages were strongly nested not only with respect to species richness but also with respect to hydroperiod and wetland size, which were positively correlated. We attribute our results to the increased colonization rates and decreased extinction rates associated with increasing hydroperiod, and to concomitant increases in wetland size, habitat heterogeneity/complexity, and possibly water temperature. Moreover, the impact of predatory fishes on species richness and composition of amphibians and macroinvertebrates was relatively minor. We found that amphibians had a significantly lower degree of nestedness than macroinvertebrates, suggesting that a higher proportion of amphibian species found in species-poor assemblages was unlikely to occur in species-rich assemblages of amphibians (e.g. wood frogs and spotted salamanders). The degree of nestedness appeared to be influenced primarily by hydroperiod and wetland size for amphibians, whereas nestedness of macroinvertebrates was influenced by unknown factors (possibly water temperature) in addition to hydroperiod and wetland size. The high degrees of nestedness observed in amphibian and macroinvertebrate assemblages imply that protection of larger, more permanent wetlands may be more important for conserving native biological diversity than protection of smaller, non-permanent wetlands. However, non-permanent wetlands are used by several species of conservation concern that often do not occur in larger and more permanent wetlands.  相似文献   

14.
Regulatory agencies need rapid indicators of hydrologic permanence for jurisdictional determinations of headwater streams. The study objective was to assess the utility of larval salamanders and habitat variables for determining stream permanence across a large geographic area. We sampled four core forests (61 sites in IN, KY, and OH) in spring (April–May) and summer (August–September) over a 2-year period. Sites in each forest were selected to cover a gradient of permanence, from perennial to ephemeral. Salamanders were collected by both benthic core sampling and timed visual search on each site visit. Classification and regression tree (CART) models were used to identify indicators of seasonal permanence at core sites that were then tested using data collected from 6 satellite forests (52 sites) located nationwide. Southern two-lined salamanders, Eurycea cirrigera, were numerically dominant and were the only species included in CART models. Salamander diversity declined with distance from the Appalachians and strong longitudinal changes in assemblage composition were evident within streams. Abundance of E. cirrigera was positively correlated with watershed area, whereas dusky salamanders, Desmognathus spp., and spring salamanders, Gyrinophilus porphyriticus, comprised a greater proportion of salamander communities at intermittent sites within their range. Spring and summer CART models incorporated E. cirrigera abundance and measures of channel geomorphology to accurately classify approximately 80% of core sites as either ephemeral, intermittent or perennial. When applied to validation data from national satellite forests, correct classification rates were >85% for intermittent and ephemeral sites, but were only ~20% for perennial sites. These findings suggest that larval plethodontid salamanders and habitat variables can be valuable predictors of headwater stream hydroperiod, but indicators are largely limited to the regional scale.  相似文献   

15.
We analyzed the effect of hydroperiod and water temperature on the life cycle of the giant water bug Belostoma bifoveolatum in two wetlands of northwestern Patagonia, Argentina. In each wetland, we estimated adult and nymph abundance and monitored water depth and temperature throughout the study period. We determined the age structure of the giant water bug population in each wetland, and estimated the cumulative degree‐days (DD) needed for eggs to hatch and for nymphs to complete their development. Individuals of B. bifoveolatum colonized temporary wetlands at the beginning of spring when daylight lasts 12 h. The breeding period varied with hydroperiod length and showed both univoltine and bivoltine strategies, with a relatively constant breeding season. Egg‐bearing males appeared in October, carrying between 35 and 144 eggs per individual. Hatching success was high (~80% of eggs) and cumulative temperature for the hatching event was between 250 and 300 DD (which represents 3–4 weeks in nature), while complete development occurred between 800 and 1220 DD (~7–8 weeks). Individuals were more abundant in shallow and sunny patches of the wetlands, where the temperature was comparatively high, than in deeper or shaded sites. These results showed that hydroperiod duration and temperature could be good regulators of voltinism and development in B. bifoveolatum, driving the population structure of this giant water bug at the southern end of its distribution range.  相似文献   

16.
The federally threatened frosted flatwoods salamander, Ambystoma cingulatum, occurs in isolated populations on the coastal plain of northern Florida, Georgia and South Carolina. An earlier phylogeographic study based primarily on mitochondrial DNA (mtDNA) and morphometrics demonstrated that the previously recognized species A. cingulatum contained two cryptic species, and that two distinct mtDNA clades were contained within the newly restricted A. cingulatum. However, salamanders from the northern extent of the species range in South Carolina were not previously available for analysis. Here, we used individuals from a newly discovered South Carolina breeding site to determine whether A. cingulatum from South Carolina are genetically distinct from their more southerly conspecifics. These analyses included the mitochondrial gene studied previously as well as broad geographic sampling of three rapidly evolving nuclear genes that allowed us to further investigate lineage diversification of flatwoods salamanders. The mitochondrial and nuclear results are largely congruent, yielding strong support for two distinct species of flatwoods salamanders and also two lineages within the eastern species. Further, the South Carolina specimens are closely related to other haplotypes found in eastern Georgia and Florida. Our summary of field surveys over the past 20 years indicates that this South Carolina population may be one of only three remaining in the entire Atlantic coastal plain distribution of this rare and declining amphibian species.  相似文献   

17.
Questions: Two hypotheses were tested: (1) physical features, such as wetland surface area and habitat diversity, together with water chemistry, are important determinants of species richness and composition of macrophyte assemblages and (2) species richness and composition of macrophyte assemblages differ between wetlands of different types (i.e., palustrine versus lacustrine) and between wetlands of different hydrologies (i.e. permanent versus intermittent). Location: A subtropical coastal plain segment (2500 km2) of southern Brazil. Methods: Quarterly collections were carried out in 15 wetlands (2004–2005) in southern Brazil. Differences in richness over time were tested using repeated measures ANOVA. Stepwise multiple regression was performed to investigate relationships between total richness and environmental variables. Significance of differences between wetland types and hydroperiods on species composition was verified by MRPP (Multi‐Response Permutation Procedure). The influence of the environmental variables on species composition was assessed using CCA (Canonical Correspondence Analysis). Results: Macrophyte species richness changed with time, was not significantly different between wetland types, but was higher in permanent wetlands than in intermittent ones. Area, habitat diversity and soluble reactive phosphorus concentration explained 76% of the variation in species richness. Species composition was different between permanent and intermittent wetlands, although it was not significantly different between wetland types. Area, habitat diversity and water chemistry explained 50.1% of species composition. Conclusions: Species richness and composition of wetland macrophytes were mainly determined by area, habitat diversity and hydroperiod. These results can be used for the development of conservation and management programs in southern Brazil.  相似文献   

18.
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, or other stressors. In coastal areas of the southeastern United States (USA), many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. We provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short‐term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico's coast in the panhandle region of Florida, received storm surge that was 3.0–3.6 m (NAVD88) above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally threatened frosted flatwoods salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds measured varied from 80 to 23,100 µS/cm, compared to 75 to 445 µS/cm in spring 2018. For 17 overwashed wetlands that were measured in both spring and fall 2018, posthurricane conductance observations were, on average, more than 90 times higher than in the previous spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non‐overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane‐prone regions.  相似文献   

19.
Carolina bays are shallow depression wetlands found in the southeastern United States that have been severely altered by human activity. The need to restore these complex and diverse systems is well established, but our limited understanding of wetland hydrologic processes in these systems hinders our ability to assess the effectiveness of bay restoration efforts. Carolina bays exhibit a wide range of moisture regimes from seasonally saturated to semipermanently inundated. Differing physicochemical properties of soils within bay interiors may control bay hydrology. However, previous efforts to establish relationships between soil characteristics and bay hydrology have been inconclusive. An assessment of soil and hydroperiod was initiated in 16 bays designated to be restored and 6 bays that were not restored (reference). Soil morphology was described, and permanent monitoring wells were installed at each site. Multiple regression analysis was used to determine relationships between the soil physicochemical characteristics and the bay hydroperiod for restored and reference bays in both pre‐ and postrestoration periods. A significant relationship (r2= 0.75, p= 0.02) between prerestoration hydroperiod and clay content in the argillic horizon (Bt) of the reference bays was observed. This relationship was then used to evaluate hydroperiod change in the restored bays from the postrestoration period. The relationship accurately identified sites that exhibited high prerestoration hydroperiods and did not need hydrologic restoration (n= 4) and effectively showed sites that exhibited substantial increases in hydroperiod due to the restoration activities (n= 7).  相似文献   

20.
Environmental conditions influence crustacean growth by affecting molt intervals and incremental increases in length and weight. In the seasonally-flooded marl prairie wetlands of eastern Everglades National Park, U.S.A., hydropattern exerts considerable influence on aquatic primary productivity, and so may influence the availability of food resources for higher trophic levels. The seasonal hydroperiod has been drastically altered by anthropogenic factors, but the impacts on the aquatic community are not well known. We studied whether differences in growth of crayfish Procambarus alleni could be detected in habitats with different hydroperiods. We first described growth patterns based on incremental increases in length and weight of crayfish on a high protein diet in the laboratory. Regression analyses indicated that growth patterns in males and females were similar. Although the intermolt period increased with age, the proportional increases in length and weight were similar through successive molts. The relationship between length and weight of crayfish was best described by a power equation for allometric growth. We then compared growth curves for crayfish subpopulations from different areas of the marl prairie. In habitats with the longest hydroperiods, crayfish weight-at-size was not significantly different from that in laboratory crayfish on the high protein diet. However, weight gain per unit increase in length in short hydroperiod sites was significantly less than in long hydroperiod sites or in the laboratory. These results indicate that crayfish productivity may be associated with hydroperiod in these stressed wetlands, and this may contribute to observed source-sink population regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号