首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
自噬是高度保守的细胞内降解途径。在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质。降解产物被释放到细胞质中重新用于必需的物质和能量合成。本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程。通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制。  相似文献   

2.
自噬是高度保守的细胞内降解途径.在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质.降解产物被释放到细胞质中重新用于必需的物质和能量合成.本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程.通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制.  相似文献   

3.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

4.
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.  相似文献   

5.
Syntaxin 17     
The phagophore (also called isolation membrane) elongates and encloses a portion of cytoplasm, resulting in formation of the autophagosome. After completion of autophagosome formation, the outer autophagosomal membrane becomes ready to fuse with the lysosome for degradation of enclosed cytoplasmic materials. However, the molecular mechanism for how the fusion of completed autophagosomes with the lysosome is regulated has not been fully understood. We discovered syntaxin 17 (STX17) as an autophagosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE). STX17 has a hairpin-type structure mediated by two transmembrane domains, each containing glycine zipper motifs. This unique transmembrane structure contributes to its specific localization to completed autophagosomes but not to phagophores. STX17 interacts with SNAP29 and the lysosomal SNARE VAMP8, and all of these proteins are required for autophagosome–lysosome fusion. The late recruitment of STX17 to completed autophagosomes could prevent premature fusion of the lysosome with unclosed phagophores.  相似文献   

6.
《Autophagy》2013,9(4):549-551
When an autophagosome or an amphisome fuse with a lysosome, the resulting compartment is referred to as an autolysosome. Some people writing papers on the topic of autophagy use the terms “autolysosome” and “autophagolysosome” interchangeably. We contend that these words should be used to denote 2 different compartments, and that it is worthwhile maintaining this distinction—the autophagolysosome has a particular origin in the process of xenophagy that makes it distinct from an autolysosome.  相似文献   

7.
《Autophagy》2013,9(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12–ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12–ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12–ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   

8.
Chen D  Zhong Q 《Autophagy》2012,8(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12-ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12-ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12-ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   

9.
Macroautophagy mediates recycling of intracellular material by a multistep pathway, ultimately leading to the fusion of closed double-membrane structures, called autophagosomes, with the lysosome. This event ensures the degradation of the autophagosome content by lysosomal proteases followed by the release of macromolecules by permeases and, thus, it accomplishes the purpose of macroautophagy (hereafter referred to as autophagy). Because fusion of unclosed autophagosomes (i.e., phagophores) with the lysosome would fail to degrade the autophagic cargo, this critical step has to be tightly controlled. Yet, until recently, little was known about the regulation of this event and the factors orchestrating it. A punctum in this issue highlights the recent paper by Noboru Mizushima and his collaborators that answered the question of how premature fusion of phagophores with the lysosome is prevented prior to completion of autophagosome closure.  相似文献   

10.
Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome.  相似文献   

11.
《Autophagy》2013,9(1):75-87
Autophagy is a bulky catabolic process that responds to nutrient homeostasis and extracellular stress signals and is a conserved mechanism in all eukaryotes. When autophagy is induced, cellular components are sequestered within an autophagosome and finally degraded by subsequent fusion with a lysosome. During this process, the ATG12–ATG5 conjugate requires 2 different binding partners, ATG16L1 for autophagosome elongation and TECPR1 for lysosomal fusion. In our current study, we describe the crystal structures of human ATG5 in complex with an N-terminal domain of ATG16L1 as well as an internal AIR domain of TECPR1. Both binding partners exhibit a similar α-helical structure containing a conserved binding motif termed AFIM. Furthermore, we characterize the critical role of the C-terminal unstructured region of the AIR domain of TECPR1. These findings are further confirmed by biochemical and cell biological analyses. These results provide new insights into the molecular details of the autophagosome maturation process, from its elongation to its fusion with a lysosome.  相似文献   

12.
Li Yu  Yang Chen 《Autophagy》2018,14(2):207-215
Macroautophagy/autophagy is an essential, conserved self-eating process that cells perform to allow degradation of intracellular components, including soluble proteins, aggregated proteins, organelles, macromolecular complexes, and foreign bodies. The process requires formation of a double-membrane structure containing the sequestered cytoplasmic material, the autophagosome, that ultimately fuses with the lysosome. This review will define this process and the cellular pathways required, from the formation of the double membrane to the fusion with lysosomes in molecular terms, and in particular highlight the recent progress in our understanding of this complex process.  相似文献   

13.
The cellular turnover of proteins and organelles requires cooperation between the autophagic and the lysosomal degradation pathways. A crucial step in this process is the fusion of the autophagosome with the lysosome. In our study we demonstrate that in Lysosomal Storage Disorders (LSDs) accumulation of undegraded substrates in lysosomes, due to deficiency of specific lysosomal enzymes, impairs the fusion between autophagosomes and lysosomes. This, in turn, leads to a progressive accumulation of poly-ubiquitinated protein aggregates and of dysfunctional mitochondria. These findings suggest that neurodegeneration in LSDs may share some mechanisms with late-onset neurodegenerative disorders in which the accumulation of protein aggregates is a prominent feature.  相似文献   

14.
《Autophagy》2013,9(2)
The current working definition of autophagy is the following: all processes in which intracellular material is degraded within the lysosome/vacuole and where the macromolecular constituents are recycled. There are several ways to classify the different types of autophagy. For example, we can separate autophagy into two primary types, based on the initial site of cargo sequestration. In particular, during microautophagy and chaperone-mediated autophagy, uptake occurs directly at the limiting membrane of the lysosome or vacuole. In contrast, macroautophagy—whether selective or nonselective—and endosomal microautophagy involve sequestration within an autophagosome or an omegasome, or late endosomes/multivesicular bodies, respectively; the key point being that in these types of autophagy the initial sequestration event does not occur at the limiting membrane of the degradative organelle. In any case, the cargo is ultimately delivered into the lysosome or vacuole lumen for subsequent degradation. Thus, I think most autophagy researchers view the degradative organelle as the ultimate destination of the pathway. Indeed, this fits with the general concept that organelles allow reactions to be compartmentalized. With regard to the lysosome or vacuole, this also confers a level of safety by keeping the lytic contents away from the remainder of the cell. If we are willing to slightly modify our definition of autophagy, with a focus on “degradation of a cell’s own components through the lysosomal/vacuolar machinery,” we can include a newly documented process, programmed nuclear destruction (PND).  相似文献   

15.
Ke PY  Chen SS 《Autophagy》2011,7(5):533-535
Autophagy is an evolutionarily conserved process that catabolizes intracellular components and maintains cellular homeostasis. Autophagy involves the sequestration of cytoplasmic content within a double-membraned autophagosome, and the fusion of the autophagosome with a lysosome to form an autolysosome for subsequent degradation (Fig. 1A). Autophagy plays a pivotal role in various aspects of cellular responses to stresses, such as nutrient deprivation, damaged organelles, aggregated proteins, exposure to endoplasmic reticulum (ER) stress and pathogen infections. Virus infection often leads to ER stress and induction of the unfolded protein response (UPR). Recent studies reveal that virus-induced UPR may activate autophagy to support the virus life cycle. However, the exact roles of the UPR and autophagy in host cell-virus interactions are still enigmatic.  相似文献   

16.
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome–lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate‐5‐phosphatase E (INPP5E), involved in autophagosome–lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin‐mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.  相似文献   

17.
Viruses often exploit autophagy, a common cellular process of degradation of damaged proteins, organelles, and pathogens, to avoid destruction. HIV-1 dysregulates this process in several cell types by means of Nef protein. Nef is a small HIV-1 protein which is expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HIV-Associated Neurocognitive Disorders (HAND). In order to explore its effect in the CNS with respect to autophagy, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFA) using an adenovirus vector (Ad-Nef). We observed that Nef expression triggered the accumulation of autophagy markers, ATG8/LC3 and p62 (SQSMT1). Similar results were obtained with Bafilomycin A1, an autophagy inhibitor which blocks the fusion of autophagosome to lysosome. Furthermore co-expression of tandem LC3 vector (mRFP-EGFP-LC3) and Ad-Nef in these cells produced mainly yellow puncta (mRFP+, EGFP+) strongly suggesting that autophagosome fusion to lysosome is blocked in PHFA cells in the presence of Nef. Together these data indicate that HIV-1 Nef mimics Bafilomycin A1 and blocks the last step of autophagy thereby helping HIV-1 virus to avoid autophagic degradation in human astrocytes.  相似文献   

18.
Autophagy - the degradation of organelles and cytoplasmic material - occurs through dynamic rearrangements of cellular membrane structures. Following the induction of autophagy, newly formed autophagosomes transfer cytosolic materials to the lysosome or vacuole for degradation. The autophagosome is an organelle destined for degradation, suggesting that the membrane structure is formed de novo many times. The autophagosome is formed through the nucleation, assembly and elongation of membrane structures. The concerted action of several Apg/Aut/Cvt proteins around a characteristic subcellular structure (the preautophagosomal structure) is the key to understanding this novel type of membrane-formation process.  相似文献   

19.
《Autophagy》2013,9(5):533-535
Autophagy is an evolutionarily conserved process that catabolizes intracellular components and maintains

cellular homeostasis. Autophagy involves the sequestration of cytoplasmic content within a double-membraned

autophagosome, and the fusion of the autophagosome with a lysosome to form an autolysosome for subsequent degradation (Fig. 1A). Autophagy plays a pivotal role in various aspects of cellular responses to stresses, such as nutrient deprivation, damaged organelles, aggregated proteins, exposure to endoplasmic

reticulum (ER) stress and pathogen infections. Virus infection often leads to ER stress and induction of the unfolded protein response (UPR). Recent studies reveal that virus-induced UPR may activate autophagy to support the virus life cycle. However, the exact roles of the UPR and autophagy in host cell-virus interactions are still enigmatic.  相似文献   

20.
In macroautophagy (hereafter autophagy), a morphological hallmark is the formation of double-membrane vesicles called autophagosomes that sequester and deliver cytoplasmic components to the lysosome/vacuole for degradation. This process begins with an initial sequestering compartment, the phagophore, which expands into the mature autophagosome. A tremendous amount of work has been carried out to elucidate the mechanism of how the autophagosome is formed. However, an important missing piece in this puzzle is where the membrane comes from. Independent lines of evidence have shown that preexisting organelles may continuously supply lipids to support autophagosome formation. In our analysis, we identified several components of the late stage secretory pathway that may redirect Golgi-derived membrane to autophagosome formation in response to starvation conditions.Key words: lysosome, membrane biogenesis, protein targeting, secretory pathway, stress, vacuole, yeast  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号