首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

2.
The median fins of fishes consist of the dorsal, anal, and caudal fins and have long been thought to play an important role in generating locomotor force during both steady swimming and maneuvering. But the orientations and magnitudes of these forces, the mechanisms by which they are generated, and how fish modulate median fin forces have remained largely unknown until the recent advent of Digital Particle Image Velocimetry (DPIV) which allows empirical analysis of force magnitude and direction. Experimental hydrodynamic studies of median fin function in fishes are of special utility when conducted in a comparative phylogenetic context, and we have examined fin function in four ray-finned fish clades (sturgeon, trout, sunfish, and mackerel) with the goal of testing classical hypotheses of fin function and evolution. In this paper we summarize two recent technical developments in DPIV methodology, and discuss key recent findings relevant to median fin function. High-resolution DPIV using a recursive local-correlation algorithm allows quantification of small vortices, while stereo-DPIV permits simultaneous measurement of x, y, and z flow velocity components within a single planar light sheet. Analyses of median fin wakes reveal that lateral forces are high relative to thrust force, and that mechanical performance of median fins (i.e., thrust as a proportion of total force) averages 0.35, a surprisingly low value. Large lateral forces which could arise as an unavoidable consequence of thrust generation using an undulatory propulsor may also enhance stability and maneuverability. Analysis of hydrodynamic function of the soft dorsal fin in bluegill sunfish shows that a thrust wake is generated that accounts for 12% of total thrust and that the thrust generation by the caudal fin may be enhanced by interception of the dorsal fin wake. Integration of experimental studies of fin wakes, computational approaches, and mechanical models of fin function promise understanding of instantaneous forces on fish fins during the propulsive cycle as well as exploration of a broader locomotor design space and its hydrodynamic consequences.  相似文献   

3.
The order Gonorynchiformes was repeatedly studied to gain new insights into the evolution of its sister-taxon, the Otophysi, the most successful freshwater fish taxon worldwide. Previous ontogenetic studies of gonorynchiforms mainly focused on the anterior vertebral column to investigate the evolutionary origin of the Weberian apparatus. Herein, we highlight the ontogeny of a different skeletal complex, the dorsal and anal fins. We studied the development of the skeletal elements of both fins in the gonorynchiform Kneria stappersii. We gained new insights into the developmental and formation patterns of K. stappersii. We discuss these patterns as well as the development of certain elements like the fin stay in comparison to other gonorynchiforms and available otomorph data. In general, the fin development in K. stappersii is very similar to that of other gonorynchiforms and even otomorphs. Specific differences, however, reveal that much remains unknown about the evolution of median fin elements such as the fin stay.  相似文献   

4.
In teleost fishes, the position of the pelvic fins shift during evolution; this positional shift seems to have diversified their locomotion and feeding behavior, thereby expanding the habitats of these fishes. Thus, such a positional shift of the pelvic fins is one of the significant features of teleost fishes from evolutionary, embryological, and taxonomic viewpoints, but no studies to date have investigated the mechanism for the rostral shift of the pelvic fins from the anal region in teleosts. Examining the fate of the prospective pelvic fin cells of the zebrafish Danio rerio and the Nile tilapia Oreochromis niloticus embryos demonstrates that the prospective pelvic fin cells are originally located near the anus, as seen in tetrapods, but their position shifts with respect to the body trunk after its protrusion from the yolk surface. In this article, we highlight such recent findings and discuss the mechanisms of pelvic fin evolution among teleost fishes.  相似文献   

5.
Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body–fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well‐studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization.  相似文献   

6.
Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This suggests that adipose fins are adaptive, although their function remains undetermined. To test for generalities in the evolution of form in de novo vertebrate fins, we studied the skeletal anatomy of adipose fins across 620 species belonging to 186 genera and 55 families. Adipose fins have repeatedly evolved endoskeletal plates, anterior dermal spines and fin rays. The repeated evolution of fin rays in adipose fins suggests that these fins can evolve new tissue types and increased structural complexity by expressing fin-associated developmental modules in these new territories. Patterns of skeletal elaboration differ between the various occurrences of adipose fins and challenge prevailing hypotheses for vertebrate fin origin. Adipose fins represent a powerful and, thus far, barely studied model for exploring the evolution of vertebrate limbs and the roles of adaptation and generative biases in morphological evolution.  相似文献   

7.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

8.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
How puffers (Teleostei: Tetraodontidae) swim   总被引:1,自引:0,他引:1  
Two species of marine Indo-Pacific puffers, Arothron meleagris and A. nigropunctatus , were filmed with a high-speed motion picture camera while swimming in a Brett-type water tunnel at speeds of 1-3.5 body lengths (BL) s−1. The puffers generated thrust by use of their pectoral fins in addition to their dorsal and anal fins; the long axis of the body tilted, mouth upwards, by 3–10) while the fishes swam; antero-ventral body profiles of the fishes changed as swimming speeds increased; pectoral fins undulated and moved 180) out of phase from each other, while dorsal and anal fins oscillated in phase with each other; frequencies of fin movements ( F ) increased linearly in relation to swimming speeds ( Uc(rel) ) and were described by the equation F =1.48 Uc(rel) +1.66; stride lengths also increased at higher Uc(rel) ; and, at swimming speeds above 3.0 BL s−1 puffers began to move their tails in sub carangiform-like modes of burst swimming. These results modify significantly the accepted view of the tetraodonti form mode of median and paired fin swimming.  相似文献   

10.
11.
Volumetric imaging of fish locomotion   总被引:1,自引:0,他引:1  
Fishes use multiple flexible fins in order to move and maintain stability in a complex fluid environment. We used a new approach, a volumetric velocimetry imaging system, to provide the first instantaneous three-dimensional views of wake structures as they are produced by freely swimming fishes. This new technology allowed us to demonstrate conclusively the linked ring vortex wake pattern that is produced by the symmetrical (homocercal) tail of fishes, and to visualize for the first time the three-dimensional vortex wake interaction between the dorsal and anal fins and the tail. We found that the dorsal and anal fin wakes were rapidly (within one tail beat) assimilated into the caudal fin vortex wake. These results show that volumetric imaging of biologically generated flow patterns can reveal new features of locomotor dynamics, and provides an avenue for future investigations of the diversity of fish swimming patterns and their hydrodynamic consequences.  相似文献   

12.
One of the most conspicuous characters of the ocean sunfishes, family Molidae, is the punctuation of the body by a deep, abbreviated, caudal fin-like structure extending vertically between the posterior ends of the dorsal and anal fins, termed the clavus by Fraser Brunner. Homology of the clavus has been a matter of debate since the first studies on molid anatomy in the early 1800s. Two hypotheses have been proposed: 1) It is a highly modified caudal fin; 2) It is formed by highly modified elements of the dorsal and anal fins. To resolve this homology issue, we studied the ontogeny of the molid vertebral column and median fins and compared it to that of a less morphologically derived gymnodont (see Part 1 of this study), a member of the family Tetraodontidae. We show that in molids the chorda never flexes during development, that the claval rays form from the posterior ends of the dorsal and anal fins toward the middle, thus closing the gap inward, and that elements of the molid clavus have an identical development and composition as the proximal-middle and distal radials of the regular dorsal and anal fins. We thus conclude that the molid clavus is unequivocally formed by modified elements of the dorsal and anal fin and that the caudal fin is lost in molids.  相似文献   

13.
Previous research on the osteology of the Gobiesocidae focused mostly on the neurocranium and the thoracic sucking disc (formed by the paired‐fin girdles). Little attention has been paid to the skeleton of the median fins. The dorsal‐ and anal‐fin skeleton of Lepadogaster lepadogaster and other gobiesocids (excluding Alabes, which lacks these fins) are characterized by the absence of spines, branched fin‐rays, and middle radials. In gobiesocids, the distal radials never ossify and consist of elastic hyaline‐cell cartilage. Gouania wildenowi is unique among gobiesocids in having further reductions of the dorsal‐ and anal‐fin skeleton, including a notable decrease in the size of the proximal‐middle radials in an anterior–posterior direction. Unlike L. lepadogaster, which exhibits a one‐to‐one relationship between the dorsal‐ and anal‐fin rays and proximal‐middle radials, G. wildenowi has a higher number of proximal‐middle radials than distal radial cartilages and fin rays in the dorsal and anal fins. In G. wildenowi, the dorsal‐ and anal‐fin rays do not articulate with the distal tip of the proximal‐middle radials but are instead positioned between proximal‐middle radials, which is unusual for teleosts. Previously unrecognized dorsal and ventral pads of elastic hyaline‐cell cartilage are also present in the caudal skeleton of L. lepadogaster, G. wildenowi, and all other gobiesocids examined. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.

Background  

Little is known about the control of the development of vertebrate unpaired appendages such as the caudal fin, one of the key morphological specializations of fishes. Recent analysis of lamprey and dogshark median fins suggests the co-option of some molecular mechanisms between paired and median in Chondrichthyes. However, the extent to which the molecular mechanisms patterning paired and median fins are shared remains unknown.  相似文献   

15.
记比耶鱼(Birgeria)在中国的首次发现   总被引:4,自引:0,他引:4  
金帆 《古脊椎动物学报》2001,39(3):168-176,T001,T002
记述了采自云南罗平晚三叠世法郎组竹杆坡段的比耶鱼一新种──刘氏比耶鱼(Birgeria liui sp. nov.),这是比耶鱼化石在中国的首次发现。刘氏比耶鱼与产自瑞士圣乔治山中三叠世边境沥青层的史氏比耶鱼最为相近,两者仅在尾柄长高之比、尾鳍长短与上下叶外缘交角、背鳍和臀鳍辐状支鳍骨的数目、臀鳍辐状骨骨板的大小、以及侧线管骨化与否等特征上略有差异。比耶鱼与软骨硬鳞鱼超目的鲟形目最为接近,两者共有一系列特征,如除尾上叶外体侧裸露,副蝶骨末端伸达头后,鳃盖骨退化;但比耶鱼同时也具有不少的特有特征,代表了软骨硬鳞鱼超目的另一类群──比耶鱼目(Birgeriiformes ord. nov.)。刘氏比耶鱼的发现进一步表明华南扬子区中、晚三叠世鱼类化石与特提斯西部的鱼群具有密切的动物地理关系。  相似文献   

16.
Specimens of a new genus and species of the stichaeid fish,Leptostichaeus pumilus, were collected from the Okhotsk Sea off Hokkaido in Japan. The present new genus and species clearly differs from all the other genera and species of the stichaeid fishes in the following characters: 3 or 4 pectoral fin rays; 10 or fewer caudal principal rays; 79–82 dorsal spines; no pelvic fin; last interneural spine supporting a single dorsal spine; infraorbital, occipital and lateral line canals absent; moderate size of dorsal spine shorter than eye diameter; membranes of dorsal and anal fins widely connected with caudal fin; a large black spot divided by a yellow band present just above gill cover.  相似文献   

17.
 The tetraodontiform swimming mode has recently attracted attention because puffers swim very steadily and, unlike most of the other median and paired fin (MPF) swimmers, use more than one pair of fins to propel themselves through the water. To date, only one study presenting data concerning the swimming kinematics of puffers has been published, and this study dealt only with two species of large body size. In the present study, the swimming kinematics of small puffers (<6 cm TL) Tetraodon schoutedeni is described and compared to the swimming kinematics of larger puffers and boxfish. The results show that, generally, the swimming kinematics of small puffers is similar to that of larger puffers. The main differences that were found are in the synchronization of dorsal and anal fin motion, and in the motion of the pectoral fins, which complete their adduction before the dorsal and anal fins do. Maximum fin beat frequency was 18.4 Hz, much faster than that of larger puffers. At slow and median swimming speeds, dorsal fin beat amplitude increases with swimming speed and then remains constant between median and fast swimming speeds. The results confirm previous findings that puffers swim extremely steadily. Most of the differences in swimming kinematics between large and small puffers can be attributed to the size differences, but the difference in fin synchronization should be further studied to be completely understood. Received: September 27, 2002 / Revised: January 7, 2003 / Accepted: February 6, 2003  相似文献   

18.
The possession of a conspicuous extension of colored ventral rays of the caudal fin in male fish of swordtails (genus Xiphophorus) is a prominent example for a trait that evolved by sexual selection. To understand the evolutionary history of this so-called sword molecularly, it is of interest to unravel the developmental pathways responsible for extended growth of sword rays during development of swordtail males. We isolated two msx genes and showed that they are differentially regulated during sword outgrowth. During sword growth in juvenile males, as well as during testosterone-induced sword development and fin ray regeneration in the sword after amputation, expression of msxC is markedly up-regulated in the sword forming fin rays. In contrast, msxE/1 is not differentially expressed in ventral and dorsal male fin rays, suggesting a link between the development of male secondary sexual characters in fins and up-regulation of msxC expression. In addition, we showed that msx gene expression patterns differ significantly between Xiphophorus and zebrafish. We also included in our study the gonopodium, a testosterone-dependent anal fin modification that serves as a fertilization organ in males of live-bearing fishes. Our finding that increased levels of msxC expression are associated with the testosterone-induced outgrowth of the gonopodium might suggest either that at least parts of the signaling pathways that pattern the evolutionary older gonopodium have been coopted to evolve a sexually selected innovation such as the sword or that increased msxC expression may be inherent to the growth process of long fin rays in general.  相似文献   

19.
This is the report of a new species of catfish, Kryptoglanis shajii nov. gen. and nov. sp., distinguished from all other genera of siluriform fishes by the combination of the following morphological characters: viz. the absence of dorsal fin; the presence of four pairs of barbels; an upwardly directed mouth, with a distinctly projecting lower jaw; subcutaneous eyes; anal fin completely confluent with the caudal fin; anal and caudal fins together carry 70–74 fin rays; and no spines in any of the fins. Kryptoglanis, which has a maximum recorded size of 59.1 mm in standard length, was collected from a well fed by subterranean springs. The type locality is a well located at the extreme western part of Western Ghats, near Chalakudy in Thrissur district, Kerala State, India.  相似文献   

20.
The cichlid Hypsophrys nicaraguensis is a popular fish known as butterfly, and despite its widespread use as pets, little is known about its reproductive biology. In order to contribute to this knowledge, the study describes the relevant larval development characteristics, from adult and larval cultures in captivity. Every 12h, samples of larvae were collected and observed under the microscope for larval stage development, and every 24h morphometric measurements were taken. Observations showed that at 120h, some larvae had swimming activity and the pectoral fins development was visible; at 144h, the dorsal fin appear and all larvae started food intake; at 168h, the formation of anal fins begins, small rudiments of pelvic fins emerge, the separation of caudal fin from anal and dorsal fins starts, and the yolk sac is reabsorbed almost completely; at 288h, the pelvic fins starts to form; at 432h, the rays and spines of dorsal and anal fins can be distinguished, both the anal and the dorsal fins have the same number of spines and rays as in adults. After 480h larvae have the first scales, ending the larval stages and starting the transformation to fingerlings. Larvae were successfully fed with commercial diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号