首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Aim A global meta‐analysis was used to elucidate a mechanistic understanding of elevational species richness patterns of bats by examining both regional and local climatic factors, spatial constraints, sampling and interpolation. Based on these results, I propose the first climatic model for elevational gradients in species richness, and test it using preliminary bat data for two previously unexamined mountains. Location Global data set of bat species richness along elevational gradients from Old and New World mountains spanning 12.5° S to 38° N latitude. Methods Bat elevational studies were found through an extensive literature search. Use was made only of studies sampling  70% of the elevational gradient without significant sampling biases or strong anthropogenic disturbance. Undersampling and interpolation were explicitly examined with three levels of error analyses. The influence of spatial constraints was tested with a Monte Carlo simulation program, Mid‐Domain Null. Preliminary bat species richness data sets for two test mountains were compiled from specimen records from 12 US museum collections. Results Equal support was found for decreasing species richness with elevation and mid‐elevation peaks. Patterns were robust to substantial amounts of error, and did not appear to be a consequence of spatial constraints. Bat elevational richness patterns were related to local climatic gradients. Species richness was highest where both temperature and water availability were high, and declined as temperature and water availability decreased. Mid‐elevational peaks occurred on mountains with dry, arid bases, and decreasing species richness occurred on mountains with wet, warm bases. A preliminary analysis of bat richness patterns on elevational gradients in western Peru (dry base) and the Olympic Mountains, WA (wet base), supported the predictions of the climate model. Main conclusions The relationship between species richness and combined temperature and water availability may be due to both direct (thermoregulatory constraints) and indirect (food resources) factors. Abundance was positively correlated with species richness, suggesting that bat species richness may also be related to productivity. The climatic model may be applicable to other taxonomic groups with similar ecological constraints, for instance certain bird, insect and amphibian clades.  相似文献   

3.
4.
The mid‐domain effect (MDE) aims to explain spatial patterns in species richness invoking only stochasticity and geometrical constraints. In this paper, we used simulations to show that its main qualitative prediction, a hump‐shaped pattern in species richness, converges to the expectation of a spatially bounded neutral model when communities are linked by short‐distance migration. As these two models can be linked under specific situations, neutral theory may provide a mechanistic population level basis for MDE. This link also allows establishing in which situations MDE patterns are more likely to be found. Also, in this situation, MDE models could be used as a first approximation to understand the role of both stochastic (ecological drift and migration) and deterministic (adaptation to environmental conditions) processes driving the spatial structure of species richness.  相似文献   

5.
滇西北地区是我国三大特有物种分化中心之一。作者利用地方植物志资料,结合数值高程模型(DEM)数据,研究了云南丽江地区种子植物物种丰富度的垂直分布格局,并分析了面积和中间膨胀效应(mid-domaineffect)对该格局的影响。研究结果表明:随着海拔的升高,各海拔段面积呈先增加后下降的分布格局;物种丰富度、物种密度和中间膨胀效应的物种丰富度预测值在海拔梯度上均呈单峰型变化格局。面积和中间膨胀效应对丽江地区物种丰富度的垂直分布格局有着显著的影响。其中,面积起主要作用,对物种丰富度的变异解释百分率达80.2%,而中间膨胀效应的影响作用相对较小,仅占11.3%。  相似文献   

6.
Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation‐dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100‐m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid‐elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high‐elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress.  相似文献   

7.
The utility of elevational gradients as tools to test either ecological hypotheses and delineate elevation‐associated environmental factors that explain the species diversity patterns is critical for moss species conservation. We examined the elevational patterns of species richness and evaluated the effects of spatial and environmental factors on moss species predicted a priori by alternative hypotheses, including mid‐domain effect (MDE), habitat complexity, energy, and environment proposed to explain the variation of diversity. Last, we assessed the contribution of elevation toward explaining the heterogeneity among sampling sites. We observed the hump‐shaped distribution pattern of species richness along elevational gradient. The MDE and the habitat complexity hypothesis were supported with MDE being the primary driver for richness patterns, whereas little support was found for the energy and the environmental factors.  相似文献   

8.
We studied the distribution patterns of endemic ferns along an elevational gradient of 3400 m in Costa Rica, Central America. We related the endemism patterns of the whole species set and separated for life forms and microhabitats according to topography and environmental factors. Fern species were surveyed in 156 plots each with an area of 400 m2, with up to five plots at every elevational step of 100 m. Global range size for every species was compiled from literature data, and species restricted to the mountain range from Costa Rica and adjacent western Panama were defined as endemic (24.5% of all species recorded). We found patterns of endemism rates mostly peaking at mid-elevation, but when separated for different life forms and microhabitats, some deviations from the overall pattern emerged. High constant humidity and reduced surface area were closely related to high levels of endemism. High humidity is discussed as a general predictor for high endemism rates in concert with highest overall richness. Restricted area of elevational belts, indicating a fragmented habitat, leads to a higher degree of population isolation and thus species differentiation. However, both interpretations were not fully supported by our data. Most importantly, endemism rates were fairly low on mountain tops that have the smallest available area in a topographically highly fragmented setting. In contrast, endemic species were more common than widespread species at the highest elevations. History and climatic shifts are assumed to play a role in this respect.  相似文献   

9.
吴永杰  杨奇森  夏霖  冯祚建  周华明 《生态学报》2012,32(14):4318-4328
为了解贡嘎山地区物种多样性的垂直分布格局,2010年4—9月利用夹日法对贡嘎山东坡非飞行小型兽类的物种多样性进行了详细调查。调查在海拔1200—4000m之间按400m间隔设置了8个采集样地,累计布夹28800夹次,捕获非飞行小型兽类个体701个,观察记录到松鼠个体25个,共调查记录小兽个体726个,分属于3目6科16属25种。非参数估计的物种丰富度Chao2和Jackknife2指数以及物种累积曲线评估表明本次调查取样充分,能很好地反映该地区非飞行小型兽类物种多样性的垂直分布格局。结果表明:非飞行小型兽类物种多样性的垂直分布格局为单峰模型;物种丰富度和物种多度在中海拔地区最高,在低海拔和高海拔地区较低;相反,物种均匀度在中海拔地区较低,在低海拔和高海拔地区较高;而物种优势度则随着海拔的升高而逐渐增加;Shannon-Wiener、Fisher-α、Margalef三个综合性物种多样性指数均显示物种多样性在中海拔地区最高;与其它多样性指数相比,Simpson指数未能很好地反映出不同海拔段群落物种多样性的垂直分布差异;而与Shannon-Wiener和Simpson指数相比,Fisher-α和Margalef指数对不同物种组成的群落多样性区分较好。同时,基于不同海拔段物种组成的聚类分析结果也表明物种多样性在中海拔地区最高。物种多样性在中海拔地区最高的垂直分布模式提示我们在贡嘎山地区的生物多样性保护和生态管理中应特别重视中海拔地段,因为该地段中居于生态食物链中间位置的小兽物种最丰富,是山地生物多样性保护的关键。此外,规范统一的调查方法将有利于研究数据的整合和减少人为因素带来的误差。  相似文献   

10.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

11.
 物种丰富度的分布格局及其形成机制是生态学研究的热点。以往的研究主要描述丰富度的格局, 而对其形成机制研究较少, 且主要集中于探讨单个因子或过程的影响。物种丰富度同时受到多个因子和过程的综合作用, 面积、温度及物种分布区限制被认为是控制山地物种丰富度海拔格局的主要因素, 三者同时沿海拔梯度而变化, 同时作用于丰富度的海拔格局。幂函数种-面积关系(SAR)、生态学代谢理论(MTE)及中域效应假说(MDE)分别基于以上3个因素, 从机制上解释了物种丰富度 的海拔格局。探讨这些假说的相对影响对研究物种丰富度的大尺度格局及其形成机制具有重要意义。方差分离方法有利于分解不同因素的影响, 为此, 该文以秦岭太白山的植物物种丰富度为例, 采用方差分离和逐步回归方法, 分析了SAR、MTE及MDE对物种丰富度海拔格局的影响。结果表明, 太白山的植物物种丰富度沿海拔梯度呈单峰分布格局, 但丰富度峰值存在类群差异; 对太白山所有植物物种丰富度的垂直格局而言, SAR、MTE及MDE分别解释了其物种丰富度随海拔变化的66.4%、19.8%和37.9%, 共同解释了84.6%, 在消除其他因素的影响后, SAR和MTE的独立影响较高(分别为25.5%和17.7%), 而MDE的独立影响不显著; 分类群研究则发现, 苔藓植物丰富度的海拔格局主要受MDE的影响, 蕨类植物丰富度的海拔格局同时受到SAR、MTE以及MDE的影响, 而种子植物物种丰富度的海拔格局主要受SAR和MTE影响。  相似文献   

12.
The mid‐domain effect (MDE) model was developed to evaluate patterns of species richness. We applied the MDE model to intraspecific distribution patterns – the spatial and temporal nest distributions of green turtles, Chelonia mydas, at Tortuguero, Costa Rica, from 1972 to 2000. Spatial and temporal distributions of green turtle nests at Tortuguero did not exhibit significant annual variation over this time period. The spatial and temporal distribution of nests largely conformed to the predictions of the MDE model, although the spatial model has a better fit. Environmental factors that may cause deviations from the MDE model are discussed. The model also indirectly provided a first estimate of the mean spatial nesting range of individual green turtles at Tortuguero: 10.1 km (SD 8.7 km). The MDE model provides insight into intraspecific as well as interspecific distribution patterns.  相似文献   

13.
14.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

15.
于1999~2001年调查了神农架自然保护区6个地点不同栖息地的非飞行哺乳动物的物种丰富度。栖息地分为8类:原始林、择伐林(采伐枯立木)、次生林、灌木林、草地、常年性河流水溪、农田和人居住区。小型非飞行哺乳动物调查用捕鼠夹;大型非飞行哺乳动物调查主要根据皮张收购资料以及样线法和痕迹法;用10 m×10 m的样方调查林地树种丰富度。调查发现,神农架自然保护区有非飞行哺乳动物59种[不包括引进种梅花鹿(Cervus nippon)]。在同一海拔高度,原始林通常比择伐林和次生林的物种丰富度高,说明采伐严重降低了物种丰富度。对比同一栖息地不同海拔高度的物种丰富度,我们发现,在中海拔地段(800~1700 m)物种丰富度最高:如在原始林和次生林,海拔1700 m的东溪物种丰富度最高;在择伐林,海拔800 m的九冲物种丰富度最高。聚类分析显示,6个地点的哺乳动物物种组成可以分为两组:高海拔组(2100 m以上)和中低海拔组(1700 m以下)。各地点的哺乳动物物种组成与植被的垂直分布是一致的。各地点的物种丰富度与单位面积(100 m2)树种平均丰富度、栖息地类型数和海拔高度相关。3个环境变量间也是相关的:海拔高度对单位面积树种平均丰富度和栖息地类型数有重要影响。根据研究结果提出两点保护建议:第一,保护区的移民迁出和退耕还林工程应首先在物种丰富度最高的九冲进行,而后是东溪和下谷;第二,为了增加个体流和基因流,保护区东西两片相间的非保护区地带应划入保护区,建立栖息地廊道。  相似文献   

16.
By reanalysing inaccurately presented data of Kerr et al. (2006) , we refute their claims that area-corrected species richness of endemic Madagascan birds and mammals increases toward the Equator and is best explained by environmental factors, and that the rainforest mid-domain effect (MDE) Lees et al. (1999) demonstrated is artefactual.  相似文献   

17.
Mid-domain effect (MDE) models predict that the random placement of species'' ranges within a bounded geographical area leads to increased range overlap and species richness in the center of the bounded area. These models are frequently applied to study species-richness patterns of macroorganisms, but the MDE in relation to microorganisms is poorly understood. In this study, we examined the characteristics of the MDE in richness patterns of ectomycorrhizal (EM) fungi, an ecologically important group of soil symbionts. We conducted intensive soil sampling to investigate overlap among species ranges and the applicability of the MDE to EM fungi in four temperate forest stands along an elevation gradient on Mount Fuji, Japan. Molecular analyses using direct sequencing revealed 302 EM fungal species. Of 73 EM fungal species found in multiple stands, 72 inhabited a continuous range along the elevation gradient. The maximum overlap in species range and the highest species richness occurred at elevations in the middle of the gradient. The observed richness pattern also fit within the 95% confidence interval of the mid-domain null model, supporting the role of the MDE in EM fungal richness. Deviation in observed richness from the mean of the mid-domain null estimation was negatively correlated with some environmental factors, including precipitation and soil C/N, indicating that unexplained richness patterns could be driven by these environmental factors. Our results clearly support the existence of microbial species'' ranges along environmental gradients and the potential applicability of the MDE to better understand microbial diversity patterns.  相似文献   

18.
Sixteen species of Copepoda were recorded in this first detailed study of Costa Rican zooplankton. Two of these species are halophile. Notes are given on some of the species and their distribution. One new species found will be described elsewhere. The Costa Rican fauna resembles in composition the fauna of other Central American and Caribbean regions. Relatively few species were recorded. This is partly due to a low intensity of sampling but also to the paucity of lentic habitats. The occurrence of two circumtropical species of Mesocyclops is interesting.
Résumé 16 espèces de Copépodes ont été inventoriées au cours d'une première étude détaillée du zooplankton dulcaquicole de Costa Rica. Deux des espèces trouvées sont halophiles. Des remarques sont faites a propos de quelques espèces et de leur répartition. Une nouvelle espèce est nouvelle — elle sera décrite par ailleurs. La fauna de Costa Rica ressemble par sa composition à celle des autres pays d'Amérique centrale et des îles caraibes. Relativement peu d'espèces sont notées. La faible intensité de l'échantillonnage mais aussi la pauvreté en habitats limniques en sont responsables. La présence de deux espèces circumtropicales de Mesocyclops est intéressante.
  相似文献   

19.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

20.
Aim The factors affecting the distribution of dioecious species have received surprisingly little attention and, as a consequence, are poorly understood. For example, there is a well‐documented negative association between dioecy and latitude, for which we have no candidate mechanisms. Conversely, it has been suggested that the relative proportion of dioecious species should be positively correlated with changes in elevation. Location Costa Rica, Central America. Methods We made use of data on the distribution of 175 seed plant species from a series of plots along a transect in Costa Rica that ranged from 30 to 2600 m a.s.l. to test the prediction that dioecy is correlated with elevation. Specifically, we examined relationships between the proportion of dioecy, at the species and individual levels, and the elevation, species richness, number of individuals, and phylogenetic diversity (PD) of plots. For comparison, we repeated all analyses with monoecious species, which also have unisexual flowers but do not suffer from reduced mate assurance and the seed shadow effect that may be the outcomes of having spatially separated sexes. Results The relative proportions of dioecious species and individuals displayed a unimodal relationship with elevation, both peaking at 750 m a.s.l. In contrast, the relative proportions of monoecious species and individuals displayed negative associations with elevation. In addition, the proportion of dioecious species was significantly positively associated with species richness and with the PD of plots. The proportion of monoecious species was not associated with species richness and was weakly positively associated with the PD of plots. Main conclusions Our results suggest that the selection pressure of elevation on the pollinators and life‐history strategy of dioecious species is much less than expected, and is overshadowed by the as‐yet unexplained correlation of dioecy with species richness. Additional studies of the ecology of cosexual and unisexual (i.e. dioecious and monoecious) species along large environmental gradients are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号