首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and aims

Disturbance affects the ability of organisms to persist on a site, and disturbance history acts as a filter of community composition. This is true for vascular plants and morphological groups of biocrusts, which respond differently to disturbance. Although functioning arid ecosystems include both groups, filtering of morphological groups of biocrusts has not previously been compared simultaneously with the responses of vascular plants.

Methods

Using a chronosequence approach, cover of vascular plants and biocrusts was examined across chronic disturbance gradients related to invasion by exotic species and grazing by livestock, following the acute disturbance of fire using paired burned and unburned plots in Wyoming big sagebrush on 99 plots.

Results

Cover of vascular plants and biocrusts was related to disturbance more so than abiotic factors of precipitation following fire, soil chemistry, percent coarse fragment and heat load index. Over time since fire of 12–23 years, we saw recovery of early successional groups: short mosses, shallow-rooted perennial grasses and annual forbs. Cover of deep and shallow-rooted perennial grasses and annual forbs increased in cover with intermediate levels of disturbance. Perennial forbs lacked a clear relationship with disturbance. Biocrusts decreased in cover with less disturbance when compared with perennial herbaceous plants but differed in sensitivities. Tall mosses were less sensitive to disturbance compared with lichens. Short mosses increased with some disturbance.

Conclusions

Morphological groups of biocrusts and vascular plants are eliminated with increasing variability in the size of gaps between perennials represented by the standard deviation of gaps between perennials. The inclusion of both groups in assessments of ecosystem recovery following disturbance addresses the fact that recovery of either group does not happen in isolation from the other but with interacting contributions to ecosystem functions.
  相似文献   

2.

Background and aims

Biocrusts are communities of cyanobacteria, mosses, and/or lichens found in drylands worldwide. Biocrusts are proposed to enhance soil fertility and productivity, but simultaneously act as a barrier to the invasive grass, Bromus tectorum, in western North America. Both biocrusts and B. tectorum are sensitive to climate change drivers, yet how their responses might interact to affect dryland ecosystems is unclear.

Methods

Using mesocosms with bare soil versus biocrust cover, we germinated B. tectorum seeds collected from warmed, warmed + watered, and ambient temperature plots within a long-term climate change experiment on the Colorado Plateau, USA. We characterized biocrust influences on soil fertility and grass germination, morphology, and chemistry.

Results

Biocrusts increased soil fertility and B. tectorum biomass, specific leaf area (SLA), and root:shoot ratios. Germination rates were unaffected by mesocosm cover-type. Biocrusts delayed germination timing while also interacting with the warmed treatment to advance, and with the warmed + watered treatment to delay germination.

Conclusions

Biocrusts promoted B. tectorum growth, likely through positive influence on soil fertility which was elevated in biocrust mesocosms, and interacted with seed treatment-provenance to affect germination. Understanding how anticipated losses of biocrusts will affect invasion dynamics will require further investigation of how plant plasticity/adaptation to specific climate drivers interact with soil and biocrust properties.
  相似文献   

3.

Background and Aims

Biological soil crusts cover about one third of the terrestrial soil surfaces in drylands, fulfilling highly important ecosystem services. Their relevance to global carbon cycling, however, is still under debate.

Methods

We utilized CO2 gas exchange measurements to investigate the net photosynthetic response of combined cyanobacteria/cyanolichen-, chlorolichen- and moss-dominated biocrusts and their isolated photoautotrophic components to light, temperature, and water. The results were compared with field studies to evaluate their compatibility.

Results

Different biocrust types responded similarly, being inhibited by limited and excess water, saturated by increasing light intensities, and having optimum temperatures. Cyanobacteria/cyanolichen-dominated biocrusts reached their water optimum at lowest contents (0.52–0.78 mm H2O), were saturated at highest light intensities, and had a comparably high temperature optimum at 37 °C. Chlorolichen-dominated crusts had a medium water optimum (0.75–1.15 mm H2O), medium saturating light intensities and a moderate temperature optimum of 22 °C. Moss-dominated biocrusts had the highest water optimum (1.76–2.38 mm H2O), lowest saturating light intensities, and a similar temperature optimum at 22 °C. Isolated photoautotrophs responded similar to complete crusts, only isolated moss stems revealed much lower respiration rates compared to complete crusts.

Conclusions

In addition to their overall functional similarities, cyanobacteria/cyanolichen-dominated biocrusts appeared to be best adapted to predicted climate change of increasing temperatures and smaller precipitation events, followed by chlorolichen-dominated biocrusts. Moss-dominated biocrusts needed by far the largest amounts of water, thus likely being prone to anticipated climate change.
  相似文献   

4.

Aims

Biological soil crusts (biocrusts) are widespread in many drylands, where plant growth is limited due to water scarcity. One of their most important functions is the stabilization of the topsoil, particularly in regions with sandy soils prone to desertification. Since the mechanisms playing a role in soil stabilization are poorly understood, this study aims to shed light on the connection between crust stability and different cementing agents.

Methods

We measured the penetration resistance and the concentrations of different cementing agents of biocrusts in the Israeli Negev Desert. Structural equation modelling was performed to examine the direct and indirect effects of the variables analyzed and identify variables that are best able to explain the observed patterns of penetration resistance.

Results

All observed variables showed a high variability within and between sites. Structural equation modelling revealed that the main parameters explaining penetration resistance are the content of fines and the electrical conductivity, while carbonates and organic carbon only have an indirect effect.

Conclusions

Our results suggest that adding silt and clay to (natural or induced) biocrusts is very likely to produce stronger, more stable crusts, which will be more effective in combating desertification and improve their ability to survive trampling by livestock.
  相似文献   

5.

Aims

Biocrusts that form on topsoils contribute ecosystem services to drylands, and their loss under anthropogenic pressure has negative ecological consequences. Therefore, development of biocrust inoculation technology for restoration is of interest. This requires knowledge of biocrust growth and dispersal. To contribute to this, we determined the speed at which biocrusts expand laterally based on the self-propelled motility of cyanobacteria.

Methodology

We inoculated sterile soil with natural biocrusts and incubated them over a year in a greenhouse under conditions mimicking local precipitation, monitoring the crust’s lateral expansion using time-course photography, chlorophyll a content, and microscopic inspection. Concurrent uninoculated controls served to monitor, and discount, natural inoculation by aeolian propagules.

Results

While the expansion front was highly variable in space, biocrusts expanded in the order of 2 cm month?1, but only in seasons with moderate temperatures (Spring and Fall). Microcoleus vaginatus, Microcoleus steenstrupii, and Scytonema spp. advanced at averages of 1 cm month?1, the crust advance front being preferentially driven by specialized propagules (hormogonia). These rates are within expectations based on instantaneous gliding motility speeds of cyanobacteria.

Conclusions

Based on the expansion capability of biocrusts during growth seasons, greenhouse inoculum units can be optimally spaced to fill 4–8 cm gaps.
  相似文献   

6.

Background and aims

Functional traits are promising indicators of global changes and ecosystem processes. Trait responses to environmental conditions have been examined widely in vascular plants. In contrast, few studies have focused on soil lichens and mosses composing biocrusts. We aimed to evaluate the potential of biocrust tissue traits as indicators of changes in climate and soil properties.

Methods

Isotope ratios and nutrient content in biocrust tissue were analyzed in 13 Mediterranean shrublands along an aridity gradient. Differences in tissue traits between biocrust groups (lichens and mosses), and relationships between tissue traits and climatic and soil variables were examined.

Results

Lichens and mosses differed in δ13C, δ15N and N content, indicating distinct physical and physiological attributes. Tissue traits correlated strongly with numerous climatic variables, likely due to a modulator effect on biocrust water relations and metabolism. We found contrasting responses of lichen and moss traits to climate, although they responded similarly to soil properties. Overall, the most responsive trait was δ15N, suggesting this trait is the best to reflect integrated processes occurring in the atmosphere and soil.

Conclusions

Biocrust tissue traits arise as cost-effective, integrative ecological indicators of global change drivers in Mediterranean ecosystems, with potential applications in response-effect trait frameworks.
  相似文献   

7.

Background and aims

Due to the well-known importance of biocrusts for several ecosystem properties linked to soil functionality, we aim to go deeper into the physiological performance of biocrusts components. Possible functional convergences in the physiology of biocrust constituents would facilitate the understanding of both species and genus distributional patterns and improve the possibility of modelling their response to climate change.

Methods

We measured gas exchange in the laboratory under controlled conditions of lichen- and moss-dominated biocrusts from four environmentally different locations in Europe. Field data were used to determine the natural hydration sources that drive metabolic activity of biocrusts.

Results

Our results show different activity drivers at the four sites. Within site analyses showed similar C fixation for the different crust types in the three sites without hydric stress whilst light use related parameters and respiration at 15 °C were similar in the between sites analyses. There were significant differences in water relations between the biocrusts types, with moss-dominated crusts showing higher maximum and optimum water contents.

Conclusions

The functional type approach for biocrusts can be justified from a physiological perspective when similar values are found in the within and between site analyses, the latter indicating habitat independent adaptation patterns. Our multi-site analyses for biocrusts functional performance provide comparisons of C fluxes and water relations in the plant-soil interface that will help to understand the adaptation ability of these communities to possible environmental changes.
  相似文献   

8.

Background and aims

Biocrust morphology is often used to infer ecological function, but morphologies vary widely in pigmentation and thickness. Little is known about the links between biocrust morphology and the composition of constituent microbial community. This study aimed to examine these links using dryland crusts varying in stage and morphology.

Methods

We compared the microbial composition of three biocrust developmental stages (Early, Mid, Late) with bare soil (Bare) using high Miseq Illumina sequencing. We used standard diversity measures and network analysis to explore how microbe-microbe associations changed with biocrust stage.

Results

Biocrust richness and diversity increased with increasing stage, and there were marked differences in the microbial signatures among stages. Bare and Late stages were dominated by Alphaproteobacteria, but Cyanobacteria was the dominant phylum in Early and Mid stages. The greatest differences in microbial taxa were between Bare and Late stages. Network analysis indicated highly-connected hubs indicative of small networks.

Conclusions

Our results indicate that readily discernible biocrust features may be good indicators of microbial composition and structure. These findings are important for land managers seeking to use biocrusts as indicators of ecosystem health and function. Treating biocrusts as a single unit without considering crust stage is likely to provide misleading information on their functional roles.
  相似文献   

9.

Aims

Root fungal relationships in forest understory may be affected by tree harvesting. Deschampsia flexuosa forms a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi functioning in nutrient uptake, and a more loose association with dark septate endophytic (DSE) fungi. We asked how harvesting affects fungal colonisations and whether DSE is more prone to change than AM.

Methods

Deschampsia flexuosa plants were sampled close to a control or a cut tree after top-canopy harvesting in a primary successional site. Colonisations were studied using light microscopy. Shoot N%, vegetation cover and soil nutrients were determined.

Results

Tree harvesting did not affect vegetation and soil parameters, except potassium (K+) increasing near cut trees. AM colonisation did not change, while DSE increased. Shoot N% increased with increasing DSE near cut trees. Hyaline septate (HSE) hyphae and soil K+ and magnesium (Mg2+) were positively correlated near control trees. Lichen cover and HSE correlated negatively.

Conclusions

DSE colonisation increased but AM did not change after harvesting. Positive correlation of DSE with shoot N% near cut trees may suggest a role for DSE in favouring plant nitrogen uptake after disturbance in an open microsite. HSE may play a role in K+ and Mg2+ uptake.
  相似文献   

10.

Background

Airway epithelium is an active and important component of the immunological response in the pathophysiology of obstructive lung diseases. Recent studies suggest an important role for vitamin D3 in asthma severity and treatment response.

Objective

Our study evaluated the influence of an active form of vitamin D3 on the expression of selected mediators of allergic inflammation in the respiratory epithelium.

Material and Methods

Primary nasal and bronchial epithelial cells were exposed to1,25D3 for 1 hour and were then stimulated or not with IL-4, TNF-α, LPS, and poly I:C. After 24 hours TSLP, IL-33, and IL-25 protein levels were measured in culture supernatants usingELISAandmRNAlevels in cells by real time PCR.

Results

1,25D3 increased TSLP concentration in unstimulated nasal epithelial cells, but did not influence IL-33 and IL-25 expression. In IL-4-stimulated epithelial cell cultures 1,25D3 mostly inhibited TSLP and IL-33 expression. In LPS-treated cultures 1,25D3 decreased IL-33 expression. Simultaneously 1,25D3 augmented IL-25 production in the same model of stimulation.

Conclusion

Our study revealed the dual nature of vitamin D3 manifested in both pro- and anti-inflammatory properties observed in airway epithelial cells.
  相似文献   

11.

Background and aims

Elemental uptake in serpentine floras in eastern North America is largely unknown. The objective of this study was to determine major and trace element concentrations in soil and leaves of three native pseudo-metallophyte C4 grasses in situ at five sites with three very different soil types, including three serpentine sites, in eastern USA.

Methods

Pseudo-total and extractible concentrations of 15 elements were measured and correlated from the soils and leaves of three species at the five sites.

Results

Element concentrations in soils of pseudo-metallophytes varied up to five orders of magnitude. Soils from metalliferous sites exhibited higher concentrations of their characteristic elements than non-metalliferous. In metallicolous populations, elemental concentrations depended on the element. Concentrations of major elements (Ca, Mg, K) in leaves were lower than typical toxicity thresholds, whereas concentrations of Zn were higher.

Conclusions

In grasses, species can maintain relatively low metal concentrations in their leaves even when soil concentrations are richer. However, in highly Zn-contaminated soil, we found evidence of a threshold concentration above which Zn uptake increases drastically. Finally, absence of main characteristics of serpentine soil at one site indicated the importance of soil survey and restoration to maintain serpentinophytes communities and avoid soil encroachment.
  相似文献   

12.

Background

Stress urinary incontinence (SUI) is a relatively common disorder that significantly affects the quality of life. Many conservative and surgical treatment methods have been recommended for SUI, but they have major limitations.

Aims

To assess the use of the CO2 fractional laser in the treatment of SUI.

Methods

This clinical trial included 55 patients with confirmed SUI. Patients underwent fractional CO2 laser treatment 3 times at 30-day intervals. Data on age, smoking history, sexual activity, menopause, and history of hormone replacement therapy (HRT) were collected. Response to treatment was assessed by SUI severity and the level of sexual satisfaction was assessed using the visual analog scale (VAS). Patients were evaluated at 3 different time points: before treatment, and 45 days and 6 months after the last laser treatment.

Results

The mean patient age was 44.4±11.4 years (range: 28 to 68 years). Smoking history was positive in 6 patients (9.1%); 19 (54.3%) were menopausal on HRT. The SUI severity score at baseline (before treatment) was 8.56±0.62 and decreased to 2.28 6 months after treatment (p<0.0001). The sexual satisfaction score was 3±0.94 at baseline and increased to 7.87±0.93 6 months after treatment (day 180) (p<0.0001, slope = + 2.2)

Conclusion

Our findings are in line with a previous study that showed the value of transvaginal CO2 fractional laser treatment for alleviation of SUI symptoms and its potential as an alternative treatment. We also observed improved sexual satisfaction in SUI patients.
  相似文献   

13.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

14.

Aims

A better understanding of how plant growth, N nutrition and symbiotic nitrogen fixation (SNF) are influenced by soil inorganic N availability, for a wide range of legume species, is crucial to optimise legume productivity, N2 fixation, while limiting environmental risks such as N leaching.

Methods

A comparative analysis was performed for ten legume crops, grown in a field experiment and supplied with four N fertiliser rates. Dry matter, N concentration and SNF were measured. In parallel, root elongation rates were studied in a greenhouse experiment.

Results

For most species, N fertilisation had little effect on plant growth and N accumulation. SNF was reduced by soil inorganic N available at sowing but with large differences in the magnitude of the response among species. The response varied according to plant N requirements for growth and plant ability to retrieve inorganic N. Accordingly, root lateral expansion rate measured in RhizoTubes was highly correlated with plant ability to retrieve inorganic N measured in the field experiment.

Conclusion

Combining SNF response to soil inorganic N, shoot N and plant ability to retrieve inorganic N, allowed a robust evaluation of differential response to soil inorganic N among a wide range of legume species.
  相似文献   

15.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

16.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

17.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

18.

Background

The ESX-1 type VII secretion system is an important determinant of virulence in pathogenic mycobacteria, including Mycobacterium tuberculosis. This complicated molecular machine secretes folded proteins through the mycobacterial cell envelope to subvert the host immune response. Despite its important role in disease very little is known about the molecular architecture of the ESX-1 secretion system.

Results

This study characterizes the structures of the soluble domains of two conserved core ESX-1 components – EccB1 and EccD1. The periplasmic domain of EccB1 consists of 4 repeat domains and a central domain, which together form a quasi 2-fold symmetrical structure. The repeat domains of EccB1 are structurally similar to a known peptidoglycan binding protein suggesting a role in anchoring the ESX-1 system within the periplasmic space. The cytoplasmic domain of EccD1has a ubiquitin-like fold and forms a dimer with a negatively charged groove.

Conclusions

These structures represent a major step towards resolving the molecular architecture of the entire ESX-1 assembly and may contribute to ESX-1 targeted tuberculosis intervention strategies.
  相似文献   

19.

Purpose

The increasing use of engineered nanomaterials (ENMs) in industrial applications and consumer products is leading to an inevitable release of these materials into the environment. This makes it necessary to assess the potential risks that these new materials pose to human health and the environment. Life cycle assessment (LCA) methodology has been recognized as a key tool for assessing the environmental performance of nanoproducts. Until now, the impacts of ENMs could not be included in LCA studies due to a lack of characterization factors (CFs). This paper provides a methodological framework for identifying human health CFs for ENMs.

Methods

The USEtox? model was used to identify CFs for assessing the potential carcinogenic and non-carcinogenic effects on human health caused by ENM emissions in both indoor (occupational settings) and outdoor environments. Nano-titanium dioxide (nano-TiO2) was selected for defining the CFs in this study, as it is one of the most commonly used ENMs. For the carcinogenic effect assessment, a conservative approach was adopted; indeed, a critical dose estimate for pulmonary inflammation was assumed.

Results and discussion

We propose CFs for nano-TiO2 from 5.5E?09 to 1.43E?02 cases/kgemitted for both indoor and outdoor environments and for carcinogenic and non-carcinogenic effects.

Conclusions

These human health CFs for nano-TiO2 are an important step toward the comprehensive application of LCA methodology in the field of nanomaterial technology.
  相似文献   

20.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号