首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular accumulation of ascorbic acid was investigated in vitro in distal intestinal mucosa of guinea pig. With 14C-ascorbic acid present at 8 μM/L in the bathing media, tissue/media (T/M) concentration ratios of at least 5 were routinely achieved. Recently absorbed ascorbic acid appeared to be free in solution in the cellular fluid in that it diffused from tissue exposed to poisons with a disappearance half-time of approximately 10 minutes. Ascorbic acid uptake was highly dependent on the presence of sodium in the bathing media; total Tris substitution resulted in a 97% decrease in uptake. Also, metabolically depleted tissue did not accumulate ascorbic acid against a concentration gradient. Uptake of 14C-ascorbic acid from a bathing solution concentration of 8 μM/L was reduced 67% in the presence of 0.8 mM/L nonlabeled ascorbic acid. Recently absorbed 14C-ascorbic acid moved more rapidly back into the lumen when the luminal solution contained nonlabeled ascorbic acid (5 mM) than when it contained mannitol (5mM). This demonstration of counter transport substantiates a carrier mechanism in the brush border.  相似文献   

2.
100 μM guanine nucleotide Gpp (NH)p reduces the affinity of the serotonergic antagonist metergoline for 3H-5HT binding sites in rat cerebral cortex. This effect is present both in inhibition binding and in saturation experiments. The hypothesis that the interaction of some serotonergic antagonists with 3H-5HT binding sites is regulated by guanine nucleotides is discussed.  相似文献   

3.
The uptake of [14C]tryptamine (14C-T) and [3H]serotonin (3H-5HT) into slices of rat hypothalamus (HT), fronto-parietal cortex (CX), and caudate nucleus (Cau) has been investigated. In all three brain areas, the uptake of3H-5HT at 37°C was much greater than that in an ice-bath at 1.0–1.5°C. In contrast, the uptake of14C-T at 37°C was not much greater than uptake at 1.0–1.5°C. While markedly different amounts of3H-5HT were accumulated by each of the brain areas studied, the regional uptake of14C-T was quantitatively similar. In general the uptake of14C-T was inhibited less than3H-5HT by cocaine, DNP, ouabain, and decreased Na+ concentrations. Similarly,14C-T was less susceptible to serotonin uptake inhibitors except in the caudate. It was concluded that though a common indoleamine uptake system accumulates both T and 5HT, a non-specific low affinity or diffusional process also transports both amines and is predominantly responsible for T, but not 5HT, uptake. The spontaneous release, or wash-out, of14C-T from the caudate was much faster than that of3H-5HT. In addition, while depolarizing stimuli caused little or no release of14C-T, large releases of3H-5HT were observed. T, therefore, does not behave like a conventional neurotransmitter.  相似文献   

4.
The selective, sensitive method of analysis of ascorbic acid by high performance liquid chromatography with electrochemical detection (HPLC/EC) has been used to determine the ascorbic acid content of cell extracts from yeasts grown in glucose-free medium, 0.3 M D-glucose, and 0.112 M L-galactono-1,4-lactone. Saccharomyces cerevisiae (strain G-25 and its tetraploid) and a commercial baker's yeast contained less than 2 μg ascorbic acid g?1 wet wt. of cells when grown for 22 h in glucose-free medium. In 0.3 M D-glucose, only the commercial baker's yeast gave a slight increase (2–50 μg g?1 wet wt. in 22 h). In 0.112 M L-galactono-1,4-lactone, all three strains produced ascorbic acid (372–587 μg g?1 wet wt. in 22 h). Lypomyces starkeyi, a species previously reported to contain a significant amount of ascorbic acid (Heick et al., Can. J. Biochem., 47 (1972) 752), was essentially devoid of ascorbic acid under all three conditions of incubation although it did contain an HPLC/EC reactive peak (RT = 0.87 relative to ascorbic acid) that was readily oxidized by charcoal in the presence of oxygen. The identity of this new compound remains to be determined.  相似文献   

5.
The saturable and specific high-affinity uptake of [3H]serotonin ([3H]5HT) (5 × 10?8 M) was studied in slices from the hippocampus, parietal cortex, septum-preoptic area, and hypothalamus of male 2, 6, 12 and 24–32 month old C57BL/6N mice. Hippocampal [3H]5-HT uptake showed a significant biphasic relationship to age, with lower values in the 2 and 24–32 month old mice compared to 6 month old mice. No significant age effects were seen in the other regions, or in [3H]norepinephrine high-affinity uptake in the hippocampus.Studies of the high-affinity uptake mechanism in synaptosomal preparations were made in a subgroup of 12 and 24 month old mice. A micro-assay using a tissue-harvester measured high-affinity uptake on 8–30 μl of the P2 suspension (crude-synaptosomal preparation). The high-affinity uptake was linear for 4 min at 37°C and inhibited in both the adult and aged tissue by 10?5 M cold 5-HT (83 and 78% respectively), 10?5 M fluoxetine (85 and 82% respectively) and 10?3 M NaCN (57 and 57% respectively). Kinetic analysis of the [3H]5HT high-affinity uptake in the hippocampus (3 min, 37°C) revealed the same apparent Km for serotonin at both ages (6.7 x 10?8 M), but a 44% decrease in Vmax in the aged hippocampal synaptosomal high-affinity uptake compared to adults (120 vs 215 pmol of 5-HT/g-tissue/3 min).These results are discussed in relationship to the reported age effects on the intrinsic neurons of the hippocampus.  相似文献   

6.
The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was studied on dopamine (DA), norepinephrine (NE), serotonin (5HT) and γ-aminobutyric acid (GABA) neurons in mouse brain and on NE neurons of mouse heart. MPTP (45 mg/kg) was administered s.c. to mice twice daily for 2 consecutive days. This dosage regimen produced a decrease in the forebrain concentrations of DA and NE at 7 and 20 days after injection. In contrast, the forebrain concentrations of 5HT and GABA were not significantly decreased at either time. MPTP administration also produced a marked decrease in the uptake of 3H-DA into striatal slices and 3H-NE into cerebral cortical slices. In contrast, the uptake of 3H-NE into hypothalamic slices and the uptake of 3H-5HT into slices from several brain regions were not altered. MPTP initially reduced the concentration of NE in the heart, but unlike the persistent decreases in the forebrain concentrations of NE and DA, the NE concentration in the heart returned to control levels at approximately 20 days after MPTP administration. These results, showing that MPTP can produce a long lasting and selective decrease in the forebrain concentrations of NE and DA and in the uptake of radioactive DA and NE into brain slices, suggest that MPTP can cause the destruction of catecholamine neurons in mouse brain. In contrast, MPTP administration does not appear to produce long term changes in either 5HT or GABA neurons.  相似文献   

7.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

8.
The administration of L-dopa to mice causes an increase in the brain concentrations of dopa and dopamine which is related temporally to a reduction in the brain concentration of 5HT. These effects occur concurrently with a reduction in the conversion of intravenously administered 3H-tryptophan to 3H-5HT without an alteration in the accumulation of 3H-tryptophan in the brain. The L-dopa-induced changes in the brain concentrations of dopa, dopamine and 5HT are not altered by pretreatment with drugs (imipramine, chlorimipramine, benztropine, cocaine) which inhibit the neuronal uptake of amines. Current evidence suggests that L-dopa is decarboxylated in 5HT neurons to dopamine, which displaces 5HT from intraneuronal storage sites.  相似文献   

9.
The 3H-5HT binding capacity of rat brain synaptic membranes prepared by density gradient centrifugation has been investigated using a rapid ultrafiltration technique. A saturable, high affinity (KD = 1.10?9 M), 5HT displaceable binding has been found. It is thermosensitive, temperature dependent and pH dependent. 5HT and related tryptamines are the most effective displacers of bound 3H-5HT, whereas compounds which are not structurally related to 5HT (chlorpromazine, imipramine, cyproheptadine and cinanserine) and other neuro-transmitters (noradrenalin, dopamine) are ineffective. The distribution of 5HT-specific binding sites in the brain is related to serotonergic input. We conclude that these 5HT binding sites might possibly represent 5HT receptor sites.  相似文献   

10.
The effects of (?)?Δ9-THC were studied on the release and accumulation of 3H5HT and 3HNE in a rat forebrain synaptosomal preparation. These studies were designed to evaluate the possible sites of action of Δ9-THC on these two processes. Δ9-THC inhibited the accumulation of 3H-leucine, 3HNE, and 3H5HT, as well as facilitated the release of the latter two amines (to a lesser degree), but had no effect on the release of 3H-leucine. Eighteen-hour pre-treatment with reserpine diminished the ability of Δ9-THC to induce release of 3H5HT, but had no effect on the in vitro inhibition of synaptosomal uptake of this amine. Concentrations of Δ9-THC which blocked the uptake of 3H5HT also reduced the conversion of 3H5HT to 3H-5-hydroxy-3-indoleacetic acid. However, Δ9-THC, at concentrations which facilitated release of 3H5HT from preloaded synaptosomes, increased the amount of 3H5HIAA found in the medium. Taken together, these data suggest that Δ9-THC facilitates release from the synaptic vesicle and retards accumulation at the neuronal membrane.  相似文献   

11.
A highly purified fraction of large dense core adrenergic vesicles was studied after isolation from bovine splenic nerve chilled within 10 to 12 minutes post mortem. In a standard medium containing 5 mM each of Mg++ and ATP and 6 μM norepinephrine (NE), this vehicle fraction contained NE in a readily releasable and a more stable pool. When vesicle dopamine β-hydroxylase was activated with 1.33 mM ascorbic acid using 6 μM 14C-dopamine as substrate at 30°C, 14C-NE was synthesized at a linear rate during the 45 minute incubation. Net accumulation of NE (p < 0.01) and a proportional net retention of newly synthesized 14C-NE occurred only when the readily releasable pool could still be demonstrated. The halftime for the fast release pool was doubled from 3 to 6 minutes (p < 0.01) with no effect on the slower released, ATP-facilitated uptake pool. Thus, both during axoplasmic transport and induced NE synthesis in vitro, there is evidence that newly synthesized NE preferentially accumulates in the readily releasable pool, a property also characteristic of the physiologically active pool in vivo.  相似文献   

12.
The effects of the metabolic poisons antimycin A (4.1 μg/ml) and 2-deoxyglucose (32.2 mM) on the uptake and vesicular storage of serotonin in washed human platelets have been examined. Within 15 seconds after the addition of the metabolic poisons, H3-5HT begins to move from vesicles into the cytoplasm; by 30 minutes after poison addition, essentially all the platelet 5HT appears to be cytoplasmic. The metabolic poisons also act rapidly to decrease plasma-membrane uptake of H3-5HT from the extracellular medium by approximately 20% within 1 minute after their addition. This may represent a direct effect rather than one resulting from altered cytoplasmic or vesicular 5HT, since platelets with <10% of the normal number of vesicular storage sites exhibit a similar reduction after addition of the metabolic poisons.  相似文献   

13.
  1. In silicic acid-starved cells of the diatom Nitzschia alba, 68Ge(OH)4 is transported against a concentration gradient, leading to intracellular concentrations of germanic acid up to 3500 times greater than the exogenous concentrations. The accumulated substrate is osmotically active, as determined by its efflux into germanic acid-free medium.
  2. Metabolic energy is required for Ge(OH)4 transport, since uptake is completely inhibited by 1 mM DNP, 5×10-2 M sodium azide or 1 mM iodacetamide, and is strongly inhibited by CCCP and antimycin A. Inhibition of protein synthesis with 20 μg/ml cycloheximide does not affect the initial velocity of transport, but strongly reduces the steady state intracellular concentration.
  3. A double reciprocal plot of uptake velocity versus substrate concentration yields a biphasic curve. The kinetic data are consistent with the interpretation that N. alba has two transport systems for germanic acid; a high affinity-low capacity (K s=0.36 μM; V max 1.2 μmoles/108 cells/min) system and a low affinity-high capacity (K s=5 μM; V max 6.2 μmoles/108 cells/min) system.
  4. The implications of these findings for silicic acid transport and metabolism in N. alba are discussed.
  相似文献   

14.
In order to examine possible selectivity of amine uptake by synaptic vesicles, the ATP-stimulated accumulation of 3H-5-hydroxytryptamine (5HT) by synaptic vesicles from rat whole brain was examined in a medium comprised largely of membrane-impermeant anions (d-tartrate). Such media have previously been shown to stabilize vesicular accumulation of several neurotransmitters. Accumulation of 3H-5HT did not occur in tartrate medium alone, but was increased biphasically with increasing concentrations of both potassium phosphate and potassium bicarbonate. At optimal concentrations of each anion (10 mM), stable accumulation of 3H-5HT was observed at 37 degrees (26.1 +/- 1.2 pmol/mg protein; Km 6 X 10(-7) M), which was reduced by greater than 95% in the absence of K2ATP, at 4 degrees C, in the presence of 10(-6) M reserpine, or in the presence of the proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Uptake was significantly antagonized by millimolar concentrations of Na+, Mg++ or Cl-, but was unaffected by ouabain (10(-5) M). Pretreatment of animals with 5,7-dihydroxytryptamine (5,7-DHT) (200 micrograms, intraventricular) 10 days prior to sacrifice reduced endogenous 5HT levels by 70%, while levels of endogenous norepinephrine (NE) and dopamine (DA) were unaffected. Accumulation of 3H-5HT, examined in the presence of 10(-6) M NE to block 3H-5HT accumulation by vesicles from noradrenergic nerve endings, was reduced by 40% in vesicles from treated animals. Vesicular accumulation of 3H-(-)-NE and 3H-DA was unaffected by 5,7-DHT treatment. The data suggest the possibility of preferential accumulation of 3H-5HT by vesicles arising from serotonergic nerve endings.  相似文献   

15.
The effects of reserpine and imipramine on intact human platelets have been investigated, utilizing brief thrombin treatment to evaluate serotonin (5HT) uptake into and loss from the vesicular (thrombin-releasable) compartment. Less than five seconds after its addition, reserpine (10?6M) almost completely inhibited the uptake of 5HT into storage vesicles; but induced an outward flux of stored 5HT from vesicles only after more than two minutes following its addition. Imipramine (10?6M), acting over a 30-minute period, caused no loss of vesicular 5HT, but acted within five minutes to inhibit markedly the movement of cytoplasmic 5HT into storage vesicles. It thus seems likely that in human platelets, inhibition of vesicular 5HT uptake does not necessarily lead to the loss of vesicular 5HT.  相似文献   

16.
Uptake rates of nitrate and phosphate were measured for four species and one variety of Porphyra from Long Island Sound (USA) at two temperatures and two nutrient medium concentrations at increasing intervals over a 24- or 48-h period. Maximum uptake rates found were: V30 μM0-1 h=73.8 μmol NO3 g−1 DW h−1 and V3 μM0-1 h=16.7 μmol PO4 g−1 DW h−1, in the two thinnest Porphyra. We found that the nitrate uptake rates were significantly greater at 30 μM than 3 μM NO3 concentration, and that the uptake rates decreased with time of exposure. Temperature (5, 15, and 25 °C) did not have as strong an effect on nitrate uptake rates as did nutrient concentration. Q10 values and uptake rates at four different nitrate concentrations indicated that nutrient uptake at 5 °C was initially an active process. After 24 h, the processes involved appeared passive as Q10 values were between 1.0 and 1.3 and nitrate uptake curves were linear. Nitrate uptake rates correlated positively with the surface area/volume (SA/V) ratio. No coherent trends were found for uptake of phosphate, except that the uptake rates were significantly higher in 30 μM NO3 medium as opposed to 3 μM NO3. We did not find any significant difference in uptake rate and pattern between the summer species Porphyra purpurea (Roth.) C. Agardh, the eurythermic Porphyra suborbiculata Kjellm., the winter species Porphyra rosengurttii J. Coll and J. Cox, and the two varieties of Porphyra leucosticta Thur. Le Jol. (both winter species).  相似文献   

17.
Acute caffeine injection (100 mg/kg) elevates brain levels of tryptophan (TRP), serotonin (5HT), and 5-hydroxyindoleacetic acid (5HIAA). Experiments were performed to determine if the increases in 5HT and 5HIAA result from a stimulation of the rate of 5HT synthesis. Both the rate of 5-hydroxytryptophan (5HTP) accumulation following NSD-1015 injection, and the rate of 3H-5-hydroxyindole synthesis from 3H-tryptophan were measured in vivo following caffeine administration and found to be normal. Tryptophan hydroxylase activity, as measured in vitro in brain homogenates, was also unaffected by caffeine. The results suggest that the elevations in brain 5HT and 5HIAA levels produced by caffeine do not reflect enhanced 5HT synthesis, despite significant elevations in brain TRP level. Some other mechanism(s) must therefore be responsible for these elevations in brain 5-hydroxyindole levels.  相似文献   

18.
Pluripotent mesenchymal stem-like cell lines were established from lungs of 3–4 months old aborted fetus. The cells present the high ex vivo expansion potential of MSC, a typical fibroblast-like morphology and proliferate up to 15 passages without displaying clear changes in morphology. Immunological localization and flow cytometry analyses showed that these cells are positive for OCT4, c-Kit, CD11, CD29, CD44, telomerase, CD106, CD105, CD166, and SSEA1, weakly expression or negative for SSEA1, SSEA3, SSEA4, CD34, CD105 and CD106. These cells can give rise to the adipogenic as evidenced by accumulation of lipid-rich vacuoles within cells identified by Oil-red O when they were induced with 0.5 mM isobutylmethylxanthine, 200 μM indomethacin, 10−6 M dexamethasone, and 10 μg/ml of insulin in high-glucose DMEM. Osteogenic lineage cells were generated in 0.1 μM dexamethasone, 50 μg/ml ascorbic acid, 10 mM β-glycerophosphate, which are shaped as the osteoblastic morphology, expression of alkaline phosphatase (AP), and the formation of a mineralized extracellular matrix identified by Alizarin Red staining. Neural cells are observed when the cultures were induced with 2-mercapometal, which are positive for nestin, NF-100, MBP and GFAP. Additionally, embryoid bodies (EBs) and sperm like cells are obtained in vitro differentiation of these lung MSCs induced with 10−5 M retinoic acid (RA). These results demonstrated that these MSCs are pluripotent and may provide an in vitro model to study germ-cell formation and also as a potential source of sperms for male infertility.  相似文献   

19.
20.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号