首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbial associations capable of converting cellulose-containing substrates to ethanol and organic acids were isolated from natural sources. The resulting mixed cultures utilized cellulose, cellobiose, glucose, maize residue, cotton, and flax boon producing ethanol (up to 0.9 g/l) and acetic acid (up to 0.8 g/l). The most complete conversion of cellulose-containing substrates occurred at 60°C and pH 7.0. The selected association of thermophilic anaerobic bacteria produced 0.64 g of ethanol per g substrate utilized at the ethanol/acetate ratio 4.7 : 1.  相似文献   

2.
Summary Strains of Saccharomyces spp. from tropical substrates tolerated temperatures up to 40 ° C, sucrose concentrations up to 50% (w/v) and ethanol concentrations up to 20 g/L in fermentation conditions. Strain TD200 tolerated 20 g/l of ethanol. The ethanol produced by strain DR1459 was comparable to that of industrial strain HTYM-81. These strains have potential use for the production of fuel alcohol.  相似文献   

3.
The thermotolerant yeast, Kluyveromyces marxianus IMB3, was grown in batch culture at 45°C on cellulose-containing media, supplemented with exogenous cellulase activity. At various stages during fermentation, both substrate and enzyme were added in batch mode and fermentation was continued for 220 h. Ethanol production increased to 20 g/l at 200 h, representing 45% of the maximum theoretical yield. In subsequent experiments, the organism was immobilized in calcium alginate beads and these were used in a similar, batch-fed system at 45°C. Again, fermentation was continued for 220 h and ethanol production increased to its maximum, of 28 g/l, within 100 h and this represented in excess of 60% of the maximum theoretical yield.  相似文献   

4.
Summary In the absence of oxygen, a strain of sarcina ventriculi, isolated from soil, could rapidly and completely ferment up to 20 g/l of arabinose. The principal products were ethanol, acetate, CO2 and H2. The yield of alcohol, up to 30% by weight of the sugar fermented, was not appreciably influenced by the pH of fermentation in the range 4–7. Sugar concentrations up to 100 g/l did not affect initial growth, but fermentation was incomplete at high sugar levels. This was probably due to the accumulation of end products other than ethanol, because the cells could grow in the presence of up to 25 g/l of added ethanol. Glucose, galactose and arabinose were sequentially utilized, in that order, when initially present as a mixed substrate. These sugars are major components of the hemicellulose from some agricultural residues. Practical implications for the general problem of pentose conversion to alcohol are discussed briefly.  相似文献   

5.
Summary The effect of substrate concentration (S 0) on the fermentation parameters of a sugar mixture byPichia stipitis Y 7124 was investigated under anaerobic and microaerobic conditions. Under microaerobiosisP. stipitis maintained high ethanol yield and productivity when initial substrate concentration did not exceed 150 g/l; ethanol yield of about 0.40 g/g and volumetric productivity up to 0.39 g/l per hour were obtained. Optimal specific ethanol productivity (0.2 g/g per hour) was observed withS 0=110 g/l. Under anaerobic conditionsP. stipitis exhibited the highest fermentative performances atS 0=20 g/l; it produced ethanol with a yield of 0.42 g/g, with a specific rate of 1.1 g/g per day. When the initial substrate level increased, specific ethanol productivity declined gradually and ethanol yield was dependent on the degree of utilization of each sugar in the mixture.Abbreviations E m maximum produced ethanol (g/l) - E 0 initial ethanol (g/l) - E v evaporated ethanol (g/l) - Q p volumetric productivity of ethanol (g ethanol/l per hour or g/l per day) - q p specific productivity of ethanol (g ethanol/g cells per hour) - q pm maximum specific productivity of ethanol (g/l per hour) - S 0 initial substrate concentration (g/l) - t f time at which produced ethanol is maximum (h) - Y p/s ethanol yield (g ethanol produced/g substrate utilized) - Y x/s cell yeild (g cells produced/g substrate utilized) - Y xo/xy xylitol yield (g xylitol produced/g xylose utilized) - probability coefficient - specific growth rate coefficient (h-1 or d-1)  相似文献   

6.
Immobilized yeast cells in agar gel beads were used in a packed bed reactor for the production of ethanol from cane molasses at 30°C, pH 4.5. The maximum productivity, 79.5g ethanol/l.h was obtained with 195g/l reducing sugar as feed. Substrate (64.2%) was utilized at a dilution of 1.33h-1. The immobilized cell reactor was operated continuously at a constant dilution rate of 0.67h-1 for 100 days. The maximum specific ethanol productivity and specific sugar uptake rate were 0.610g ethanol/g cell.h and 1.275g sugar/g cell.h, respectively.  相似文献   

7.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

8.
Summary Cassava and sago starch were evaluated for their feasibilities as substrates for ethanol production using Zymomonas mobilis ZM4 strain. Before fermentation, the starch materials were pretreated employing two commercial enzymes, Termamyl (thermostable -amylase) and AMG (amyloglucosidase). Using 2 l/g of Termamyl and 4 l/g of AMG, effective conversion of both cassava and sago starch into glucose was found with substrate concentration up to 30%(w/v) dry substances. Fermentation study performed using these starch hydrolysates as substrates resulted in ethanol yield at an average of 0.48g/g by Z. Mobilis ZM4.  相似文献   

9.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

10.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

11.
The fermentability of a corn cob, acid-hydrolysed hemicellulose by Pichia stipitis was considerably improved by pre-treatment with Ca(OH)2. The total sugars utilized and ethanol yield for the untreated hydrolysate were 18% and 0.21 g/g, respectively, compared with 82% and 0.32 g/g respectively for the treated material. Adaptation of the yeast to the hydrolysate resulted in a significantly higher fermentation rate with over 90% of the initial total sugars being utilized and an ethanol yield and maximum ethanol concentration of 0.41 g/g and 13.3 g/l, respectively.The authors are with the USDA Forest Products Laboratory. One Gifford Pinchot Drive. Madison, WI, 53705 USA  相似文献   

12.
A lactose utilizing yeast strain, Kluyveromyces marxianus DSMZ-7239 was used for ethanol formation from cheese-whey powder (CWP) solution in batch experiments. Effects of initial substrate (CWP) and yeast concentrations on the rate and extent of ethanol formation were investigated. The initial pH and oxidation-reduction potential (ORP) was kept at 5 and -250 mV, respectively. The rate and extent of ethanol formation increased with increasing CWP concentration up to 156 g l(-1) (75 g l(-1) sugar) and then decreased for larger CWP concentrations due to substrate inhibition at high sugar concentrations. The ethanol yield coefficient was also maximum (0.54 g EtOH/g sugar) and equal to the theoretical yield at CWP concentration of 156 g l(-1). The growth yield coefficient was found to be Y(x/s)=1.2+/-0.1g biomass g sugar(-1). The rate of sugar utilization and ethanol formation also increased linearly with increasing initial biomass concentrations. A kinetic model describing the rate of sugar utilization and substrate inhibition as function of the initial substrate and the biomass concentrations was developed. The kinetic constants were determined using the experimental data. Model predictions of sugar utilization rates were in good agreement with the experimental data. The results indicated that the initial sugar concentration should be below 75 g l(-1) (CWP<156 g l(-1)) and the initial biomass should be above 850 mg l(-1) to obtain high rates and yields of ethanol formation and to avoid substrate inhibition.  相似文献   

13.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

14.
Pretreated sunflower stalks saccharified with a Trichoderma reesei Rut-C 30 cellulase showed 57.8% saccharification. Enzyme hydrolysate concentrated to 40 g/l reducing sugars was fermented under optimum conditions of fermentation time (24 h), pH (5.0), temperature (30 degrees C) and inoculum size (3% v/v) and, showed a maximum ethanol yield of 0.444 g/g ethanol. Ethanol production scaled up in a 1 l and a 15 l fermenter under optimum conditions revealed maximum ethanol yields of 0.439 and 0.437 g/g respectively.  相似文献   

15.
Of the four thermotolerant, osmotolerant, flocculating yeasts (VS1, VS2, VS3 and VS4) isolated from the soil samples collected within the hot regions of Kothagudem Thermal Power Plant, located in Khammam Dt., Andhra Pradesh, India, VS1 and VS3 were observed as better performers. They were identified as Saccharomyces cerevisiae. VS1 and VS3 were tested for their growth characteristics and fermentation abilities on various carbon sources including molasses at 30v°C and 40v°C respectively. More biomass and fermentation was observed in sucrose, fructose and glucose. Maximum amount of ethanol produced by VS3 containing 150 (g/l) of these substrates were 74, 73, and 72 (g/l) at 30v°C and 64, 61 and 63 (g/l) at 40v°C respectively. With molasses containing 14% sugar, the amount of ethanol produced by VS3 was 53.2 and 45 (g/l) at 30v°C and 40v°C respectively. VS3 strain showed 12% W/V ethanol tolerance. VS3 strain was also characterised for its ethanol producing ability using various starchy substrates in solid state and submerged fermentation. More ethanol was produced in submerged than solid state fermentation.  相似文献   

16.
Summary The acetic acid concentration in a batch culture of Acetobacter aceti M23 increased up to 90 g/l by adding ethanol intermittently. Although the bacterial cells ceased growth at about 60 g acetic acid/l, non-viable cells still preserved ethanol oxidation activity. Cell recycling by filtration in a repeated fed-batch culture increased the overall acetic acid production rate 2.84-fold compared to that without cell recycling for the purpose of obtaining an acetic acid concentration of 80.8 g/l. Repeated fed-batch cultivation with cell recycle was effective for increasing the production rate of acetic acid and obtaining high amounts close to a lethal concentration (90 g/l).Offprint requests to: Kiyoshi Toda  相似文献   

17.
Acid-hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol/l sulfuric acid using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol after 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol after 18 h. The results showed that acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by it in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.  相似文献   

18.
Summary Vertical Rotating Immobilized Cell Reactor was designed and built for glucose conversion into ethanol. Immobilized biomass units withZ. mobilis cells attached into polyurethane foam discs were fixed along a rotating shaft inside the bioreactor. The effect of rotation speed on the concentration of immobilized biomass was studied. Stability of the bioreactor over long-term operation was dependent on the concentration of the immobilized biomass. With fermentation carried out at 6 rpm a constant active immobilized cell concentration of only 34.5 g/l was maintained and used to convert up to 140 g glucose/l into more than 70 g ethanol/l with a volumetric ethanol productivity of 63 g/l/h.  相似文献   

19.
Fuzzy reasoning was applied to control both ethanol and glucose concentrations in fed-batch cultures of baker's yeast. This fuzzy controller consisted of three membership functions (concentrations of dissolved oxygen (DO), ethanol and glucose) and 18 production rules. Fuzzy inference was carried out by IF {A is a and B is b,...#x007D;, THEN {C is c} from the on-line measured concentrations of DO, ethanol and glucose. When medium concentrations of ethanol and glucose in fed-batch culture of baker's yeast were set at 2 g/l and 0.2 g/l, both ethanol and glucose concentrations were controlled at 2.67±0.35 g/l and 0.27±0.25 g/l, respectively, ethanol production was reduced from 26 g/l to 34 g/l, cell yield increased from 0.38 to 0.53 g dry cell/g consumed glucose and ethanol yield decreased from 0.50 to 0.14 g ethanol/g consumed glucose, respectively, as compared with those of the glucose only control at 0.2 g/l.  相似文献   

20.
Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号