首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 μmol of DMS was stoichiometrically converted into 112 μmol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.  相似文献   

2.
A newly isolated methanogen, strain DMS1(T), is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1(T) are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1(T) differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1(T) is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1(T) is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1(T) can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems.  相似文献   

3.
Methane is a powerful greenhouse gas but the microbial diversity mediating methylotrophic methanogenesis is not well-characterized. One overlooked route to methane is via the degradation of dimethylsulfide (DMS), an abundant organosulfur compound in the environment. Methanogens and sulfate-reducing bacteria (SRB) can degrade DMS in anoxic sediments depending on sulfate availability. However, we know little about the underlying microbial community and how sulfate availability affects DMS degradation in anoxic sediments. We studied DMS-dependent methane production along the salinity gradient of the Medway Estuary (UK) and characterized, for the first time, the DMS-degrading methanogens and SRB using cultivation-independent tools. DMS metabolism resulted in high methane yield (39%–42% of the theoretical methane yield) in anoxic sediments regardless of their sulfate content. Methanomethylovorans, Methanolobus and Methanococcoides were dominant methanogens in freshwater, brackish and marine incubations respectively, suggesting niche-partitioning of the methanogens likely driven by DMS amendment and sulfate concentrations. Adding DMS also led to significant changes in SRB composition and abundance in the sediments. Increases in the abundance of Sulfurimonas and SRB suggest cryptic sulfur cycling coupled to DMS degradation. Our study highlights a potentially important pathway to methane production in sediments with contrasting sulfate content and sheds light on the diversity of DMS degraders.  相似文献   

4.
A newly isolated methanogen, strain DMS1T, is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1T are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1T differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1T is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1T is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1T can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems.  相似文献   

5.
Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.  相似文献   

6.
Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.  相似文献   

7.
Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.  相似文献   

8.
Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.  相似文献   

9.
Sulfate ions did not inhibit methanogenesis in estuarine sediments supplemented with methanol, trimethylamine, or methionine. However, sulfate greatly retarded methanogenesis when hydrogen or acetate was the substrate. Sulfate reduction was stimulated by acetate, hydrogen, and acetate plus hydrogen, but not by methanol or trimethylamine. These results indicate that sulfate-reducing bacteria will outcompete methanogens for hydrogen, acetate, or both, but will not compete with methanogens for compounds like methanol, trimethylamine, or methionine, thereby allowing methanogenesis and sulfate reduction to operate simultaneously within anoxic, sulfate-containing sediments.  相似文献   

10.
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds.  相似文献   

11.
Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9.  相似文献   

12.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.  相似文献   

13.
The distribution of methanogenic and sulfate-reducing bacteria was examined in sediments from three sites off the coast of eastern Connecticut and five sites in Long Island Sound. Both bacterial groups were detected at all sites. Three distributional patterns were observed: (i) four sites exhibited methanogenic and sulfate-reducing populations which were restricted to the upper 10 to 20 cm, with a predominance of sulfate reducers; (ii) three sites in western Long Island Sound exhibited a methanogenic population most abundant in sediments deeper than those occupied by sulfate reducers; (iii) at one site that was influenced by fresh groundwater, methanogens and sulfate reducers were numerous within the same depths; however, the number of sulfate reducers varied vertically and temporally with sulfate concentrations. It was concluded that the distributions of abundant methanogenic and sulfate-reducing bacteria were mutually exclusive. Methanogenic enrichments yielded all genera of methanogens except Methanosarcina, with the methanobacteria predominating.  相似文献   

14.
Colony counts of acetate-, propionate- and l-lactate-oxidizing sulfate-reducing bacteria in marine sediments were made. The vertical distribution of these organisms were equal for the three types considered. The highest numbers were found just beneath the border of aerobic and anaerobic layers.Anaerobic mineralization of acetate, propionate and l-lactate was studied in the presence and in the absence of sulfate. In freshwater and in marine sediments, acetate and propionate were oxidized completely with concomitant reduction of sulfate. l-Lactate was always fermented. Lactate-oxidizing, sulfate-reducing bacteria, belonging to the species Desulfovibrio desulfuricans, and lactate-fermenting bacteria were found in approximately equal amounts in the sediments. Acetate-oxidizing, sulfate-reducing bacteria could only be isolated from marine sediments, they belonged to the genus Desulfobacter and oxidized only acetate and ethanol by sulfate reduction. Propionate-oxidizing, sulfate-reducing bacteria belonged to the genus Desulfobulbus. They were isolated from freshwater as well as from marine sediments and showed a relatively large range of usable substrates: hydrogen, formate, propionate, l-lactate and ethanol were oxidized with concomitant sulfate reduction. l-Lactate and pyruvate could be fermented by most of the isolated strains.  相似文献   

15.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰.  相似文献   

16.
Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 μmol g−1, with highly depleted δ13C-CH4 values ranging from −89‰ to −70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 μmol g−1 with comparatively enriched δ13C-CH4 values of −54‰ to −37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.  相似文献   

17.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quaternary amines and all other substrates examined. Incubation of exogenous trimethylamine, choline, or glycine betaine with either bromoethane sulfonic acid or sodium molybdate was used to establish pathways of degradation of the substrates. Methanogenesis dominated the metabolism of trimethylamine, although limited nonmethanogenic activity, perhaps by sulfate-reducing bacteria, was observed. Acetate was oxidized primarily by sulfate reducers. Both choline and glycine betaine were fermented stoichiometrically to acetate and trimethylamine; apparently, neither substrate could be utilized directly by methanogens or sulfate reducers, and the activities of fermenters, methanogens, and sulfate reducers were all required to effect complete mineralization. These observations support the hypothesis that the presence of quaternary amines can mediate the coexistence of sulfate reduction and methanogenesis in marine surface sediments; they also implicate methanogens in the nitrogen cycle of marine sediments containing quaternary amines.  相似文献   

18.
Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.  相似文献   

19.
The effect of variations in H2 concentrations on methanogenesis from the non-competitive substrates methanol and methylamine (used by methanogens but not by sulfate reducers) was investigated in methanogenic marine sediments. Imposed variations in sulfate concentration and temperature were used to drive systematic variations in pore water H2 concentrations. Specifically, increasing sulfate concentrations and decreasing temperatures both resulted in decreasing H2 concentrations. The ratio of CO2 and CH4 produced from 14C-labelled methylamine and methanol showed a direct correlation with the H2 concentration, independent of the treatment, with lower H2 concentrations resulting in a shift towards CO2. We conclude that this correlation is driven by production of H2 by methylotrophic methanogens, followed by loss to the environment with a magnitude dependent on the extracellular H2 concentrations maintained by hydrogenotrophic methanogens (in the case of the temperature experiment) or sulfate reducers (in the case of the sulfate experiment). Under sulfate-free conditions, the loss of reducing power as H2 flux out of the cell represents a loss of energy for the methylotrophic methanogens while, in the presence of sulfate, it results in a favourable free energy yield. Thus, hydrogen leakage might conceivably be beneficial for methanogens in marine sediments dominated by sulfate reduction. In low-sulfate systems such as methanogenic marine or freshwater sediments it is clearly detrimental--an adverse consequence of possessing a hydrogenase that is subject to externally imposed control by pore water H2 concentrations. H2 leakage in methanogens may explain the apparent exclusion of acetoclastic methanogenesis in sediments dominated by sulfate reduction.  相似文献   

20.
The effects of sulfate on the anaerobic degradation of lactate, propionate, and acetate by a mixed bacterial culture from an anaerobic fermenter fed with wine distillery waste water were investigated. Without sulfate and with both sulfate and molybdate, lactate was rapidly consumed, and propionate and acetate were produced; whereas with sulfate alone, only acetate accumulated. Propionate oxidation was strongly accelerated by the presence of sulfate, but sulfate had no effect on acetate consumption even when methanogenesis was inhibited by chloroform. The methane production was not affected by the presence of sulfate. Counts of lactate- and propionate-oxidizing sulfate-reducing bacteria in the mixed culture gave 4.5×108 and 1.5×106 viable cells per ml, respectively. The number of lactate-oxidizing fermentative bacteria was 2.2×107 viable cells per ml, showing that sulfate-reducing bacteria outcompete fermentative bacteria for lactate in the ecosystem studied. The number of acetoclastic methanogens was 3.5×108 viable cells per ml, but only 2.5×104 sulfate reducers were counted on acetate, showing that acetotrophic methanogens completely predominated over acetate-oxidizing sulfate-reducing bacteria. The contribution of acetate as electron donor for sulfate reduction in the ecosystem studied was found to be minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号