首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   

2.
The physiological, morphological and biochemical effects of type A Botulinum toxin (BoTX) were analysed in the electric organ of Torpedo, a modified neuromuscular system. The quantal content of the postsynaptic potential, or electroplaque potential (EPP), was reduced by BoTX but the quantum size remained unchanged till complete failure of the neurally evoked transmission. BoTX also suppressed the occurrence of spontaneous electroplaque potentials (MEPPs) of a quantal size but potentials of a smaller amplitude still kept on occurring in the intoxicated synapses. BoTX inhibited the evoked release of acetylcholine (ACh; biochemically measured) but the rate of spontaneous ACh release transiently increased during the period when evoked release went down. On the other hand, there were no significant change of ACh content, of ACh turnover, of ACh repartition in the vesicular and free compartments, or in the number of synaptic vesicles. Surprisingly, the amount of ATP was reduced to 50% in BoTX treated tissue at the time of transmission failure; also the level of creatine phosphate (CrP) was lowered to less than 20% and the rate of activity of creatine kinase was reduced. It was concluded that, electrophysiologically, BoTX affects synaptic transmission in a very similar way in the electric organ and in the neuromuscular junctions. On the other hand, the shortage of ATP supply found in the present study may play a role in the pathophysiology of intoxication and should be taken into account in investigations designed to see whether BoTX affects various phosphorylations in cholinergic nerve terminals.  相似文献   

3.
Abstract: The distribution of o-rab3—a synaptic vesicle-associated low-molecular-weight GTP-binding protein—was studied in various neural tissues of the electric ray Torpedo marmorata. o-rab3 was shown to be associated selectively with isolated cholinergic synaptic vesicles derived from the electric organ. Gel filtration of cholinergic synaptic vesicles using Sephacryl S-1000 column chromatography demonstrated a copurification of o-rab3 with the synaptic vesicle content marker ATP and with SV2—a synaptic vesicle transmembrane glycoprotein. Indirect immunofluorescence using antibodies against o-rab3 and SV2 and a double labeling protocol revealed an identical distribution of both antigens in the cholinergic nerve terminals within the electric organ and at neuromuscular junctions. An immunoelectron microscopic analysis demonstrated the presence of o-rab3 at the surface of the synaptic vesicle membrane. In the CNS immunofluorescence of o-rab3 and SV2 overlap only in small and distinct areas. Whereas SV2 has an overall distribution in nerve terminals of the entire CNS, o-rab3 is restricted to a subpopulation of nerve terminals in the dorsolateral neuropile of the rhombencephalon and in the dorsal horn of the spinal cord. Our results demonstrate that the synaptic vesicle-associated G protein o-rab3 is specifically expressed only in subpopulations of neurons in the Torpedo CNS.  相似文献   

4.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

5.
The rate of translocation of newly synthesized acetylcholine (ACh) from the presynaptic cytosol of Torpedo electric organ nerve terminals into synaptic vesicles and the extent to which ACh release from these neurons is mediated by a vesicular mechanism were investigated. For this purpose the compound 2(4-phenylpiperidino)cyclohexanol (AH5183), which inhibits the active transport of ACh into isolated cholinergic synaptic vesicles, was employed. Preincubation of purified Torpedo nerve terminals (synaptosomes) with AH5183 does not affect the intraterminal synthesis of [3H]ACh but results in a marked inhibition (85%) of its Ca2+-dependent K+-evoked release. By contrast, the evoked release of the endogenous nonlabeled ACh is not affected by this compound. When AH5183 is added during radiolabeling, it causes a progressively smaller inhibition of [3H]ACh release which is completely abolished if the drug is added after the preparation has been labeled. These findings suggest that most of the newly synthesized synaptosomal [3H]ACh (85%) is released by a vesicular mechanism and that some [3H]ACh (15%) may be released by a different process. The translocation of cytosolic [3H]ACh into the synaptic vesicles was monitored by determining the time course of the loss of susceptibility of [3H]ACh release to AH5183. It was found not to be coupled kinetically to [3H]ACh synthesis and to lag behind it. The nature of the intraterminal processes underlying this lag is discussed.  相似文献   

6.
The colocalization of vasoactive intestinal polypeptide (VIP) with the cholinergic specific surface antigen Chol-1 was investigated in synaptosomes derived from the rat cerebral cortex. Immunoaffinity purification of cortical synaptosomes using antisera to Chol-1 resulted in the copurification of VIP and cholinergic nerve terminals. VIP was purified with a yield of 75% of that of choline acetyltransferase (ChAT). These results suggest that approximately 53% of the cortical cholinergic terminals contain VIP, whereas 75% of the cortical VIP content is present in these cholinergic terminals. Both hypotonic lysis and depolarization of the nerve terminals resulted in the differential release of VIP and acetylcholine (ACh), indicating the different compartmentalization in the same nerve terminal. Complement-mediated lysis of cholinergic nerve terminals, using antisera to Chol-1, resulted in the release of 64% of the ChAT, 71% of ACh, and 27% of the VIP. The application of our method enables quantifying and mapping, with a fast, efficient, and specific technique, the coexisting peptides in cholinergic neurons of distinct brain areas.  相似文献   

7.
The main electric organ of Electrophorus electricus is particularly rich in thiamine triphosphate, which represents 87% of the total thiamine content in this tissue. The thiamine pyrophosphate concentration, however, is very low in the eel electric organ and skeletal muscle as compared with other eel or rat tissues. Furthermore, electroplax membranes contain a whole set of enzymes responsible for the dephosphorylation of thiamine tri-, pyro- and monophosphate. Thiamine triphosphatase has a pH optimum of 6.8 and is dependent on Mg2+. The real substrate of the enzyme is probably a 1:1 complex of Mg2+ and thiamine triphosphate. Thiamine pyrophosphatase is activated by Ca2+. The apparent Km for thiamine triphosphate and Vmax are found to be, respectively, 1.76 mM and 5.95 nmol/mg of protein/min. Thiamine triphosphatase activity is inhibited at physiological K+ concentrations (up to 90 mM) and increasing Na+ concentrations (50% inhibition at 300 mM). ZnCl2 (10 mM) inhibits 90% of the enzyme activity. ATP and ITP are also strongly inhibitory. No significant effect of neurotoxins is seen. Membrane-associated thiamine triphosphatase is affected differently by proteolytic enzymes and is partially inactivated by pretreatment with phospholipase C and neuraminidase. The physiological significance of thiamine triphosphatase is discussed in relation to a specific role of thiamine in the nervous system.  相似文献   

8.
Antisera were raised in guinea pigs to synaptic vesicles purified from the electric organ of Torpedo marmorata. In cholinergic nerve terminals from Torpedo the major antigens identified had Mr 300,000-150,000, 86,000, and 18,000. The Mr 86,000 antigen was conserved between Torpedo and rat, where it is neuron-specific and concentrated in nerve terminals. When rat brain synaptosomes are subfractionated the antigen is associated with synaptic vesicles. The antigen is not found in the cytoskeleton and in the vesicle-free cytosol. Immunohistochemical localization of the antigen in rat shows it to be associated with synapses in diaphragm, cerebellum, hippocampus, and cerebral cortex. The staining pattern of the antigen indicates that the antigen is not cholinergic-specific. The function of the Mr 86,000 antigen remains to be identified.  相似文献   

9.
Summary Antisera were raised to cholinergic presynaptic plasma membranes and synaptic vesicles isolated from the electric organ of Torpedo marmorata and tested by immunochemical and immunohistochemical methods. The antisera responded to many antigens not specific to nerve endings, but it was possible to eliminate these antibodies by means of simple absorption procedures with fractions containing the unwanted antigens. After absorption, staining of thin sections of electric organ by immunofluorescence was limited to the region of nerve endings in the tissue.The remaining antibodies responded in the case of the plasma membrane antisera predominantly to a 33,000 molecular-weight polypeptide and a chloroform/methanol-soluble antigen. In cross reactivity studies it was found that this antiserum not only stains cholinergic nerve endings in Torpedo but also those in mammalian tissue. The antigen responsible for the cross reactivity is restricted to the chloroform/methanol-soluble material.The vesicle antiserum labels cholinergic nerve endings in mammalian tissue as well; the relevant antigen in this case is different from the one described above and is likely to be a glycosaminoglycan. The antisera provide valuable markers for cholinergic nerve terminals. In addition, the vesicle antiserum may now be used to study axonal transport and the life cycle of this organelle in the cholinergic neurone.Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - EGTA ethylenebis (oxoethylenenitrilo) tetra-acetic acid - MW apparent molecular weight Enzymes. Na+, K+-activated ATPase (EC 3.6.1.3); acetylcholine esterase (EC 3.1.1.7); choline acetyl-transferase (EC 2.3.1.6)  相似文献   

10.
The encephalopathy caused by severe thiamine depletion of the mammalian CNS is accompanied by regionally selective changes in neurotransmitter function. Thiamine deficiency induced by administration of the central thiamine antagonist, pyrithiamine, causes more widespread lesions and accompanying changes in neurotransmitter function than does the deficiency state induced by chronic deprivation of the vitamin. There is convincing evidence for a central muscarinic cholinergic lesion in pyrithiamine-treated rats and neuropharmacological studies show that this lesion is partially responsible for the neurological deficit resulting from this treatment. There is also good evidence to suggest that thiamine deprivation selectively affects cerebellar afferent and efferent systems. Included in these are a loss of serotoninergic mossy fibres and of the functional integrity of glutamatergic granule cells. In addition, abnormalities of both nerve terminals and glial cells are found in lateral vestibular nucleus and it has been proposed that a loss of Purkinje cell terminals and concomitant decreases of pontine GABA may reflect these changes. The selective vulnerability of brain structures to thiamine deprivation is reflected in (i) the turnover rate of total thiamine in these areas and (ii) the selective decreases in activity of the thiamine pyrophosphate dependent enzyme pyruvate dehydrogenase.  相似文献   

11.
The nature of the intraterminal compartments from which acetylcholine (ACh) is released following presynaptic stimulation was investigated. This was pursued by examining the effects of the anticholinergic drug 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of newly synthesized [3H]ACh and of endogenous ACh from purified cholinergic nerve terminals (synaptosomes) which were isolated from the electric organs of Torpedo. Preincubation of the synaptosomes, with AH5183 (1-10 microM), does not affect either the intraterminal synthesis of [3H]ACh or the uptake of its precursors, but results in a marked inhibition (85%) of the release of the newly synthesized [3H]ACh. However, when AH5183 is added following the accumulation of [3H]ACh in the nerve terminals, it does not affect [3H]ACh release. AH5183 also has no effect on the release of preformed endogenous ACh. These findings, together with the previous in vitro demonstrations that AH5183 is a potent inhibitor of ACh uptake into isolated cholinergic vesicles, suggest that most of the synaptosomal ACh is secreted by a vesicular mechanism.  相似文献   

12.
The metabolism of acetate was investigated in the nerve-electroplaque system of Torpedo marmorata. In intact fragments of electric organ, radiolabeled acetate was incorporated into acetylcholine (ACh), acetylcarnitine (ACar), and three amino acids: aspartate, glutamate, and glutamine. These compounds were identified by TLC, high-voltage electrophoresis, column chromatography, and enzymic tests. The system responsible for acetate transport and incorporation into ACh displayed a higher affinity but a lower Vmax than that involved in the synthesis of ACar and amino acids. Choline, when added to the medium, increased the rate of acetate incorporation into ACh but decreased (at concentrations greater than 10(-5) M) that into ACar and amino acids. Monofluoroacetate slightly depressed ACh and ACar synthesis from external acetate but inhibited much more the synthesis of amino acids. During repetitive nerve stimulation, the level of the newly synthetized [14C]ACh was found to oscillate together with that of endogenous ACh, but the level of neither [14C]ACar nor the 14C-labeled amino acids exhibited any significant change as a function of time. This means that there is probably no periodic transfer of acetyl groups between ACh and the investigated metabolites in the course of activity. Acetate metabolism was also tested in the electric lobe (which contains the cell bodies of the neurons innervating the electric organ) and in Torpedo synaptosomes (which are nerve terminals isolated from the same neurons). Radioactive pyruvate and glutamine were also assayed in some experiments for comparison with acetate. These observations are discussed in connection with ACh metabolism under resting and active conditions in tissues where acetate is the preferred precursor of the neurotransmitter.  相似文献   

13.
The aim of the present study was to reveal whether reduced cortical cholinergic input affects the acetyl-CoA metabolism in cholinoceptive cortical target regions which may play a causative role for the deficits in cerebral glucose metabolism observed in Alzheimer's disease. The effect of cortical cholinergic denervation produced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin, on activities of pyruvate dehydrogenase and adenosine triphosphate (ATP)-citrate lyase as well as on the level of synaptoplasmic and mitochondrial acetyl-CoA and acetylcholine release in cortical target regions was studied. Cholinergic lesion produced 83%, 72% and 32% decreases in the activities of choline acetyltransferase, acetylcholinesterase and ATP-citrate lyase in nerve terminals isolated from rat brain cortex, respectively, but no change in pyruvate dehydrogenase activity. Spontaneous and Ca2+-evoked acetylcholine release from synaptosomes was inhibited by 76% and 73%, respectively, following immunolesion. The lesion-induced 39% decrease of acetyl-CoA level in synaptosomal mitochondria was accompanied by 74% increase in synaptoplasmic fraction. Levels of acetyl-CoA and CoASH assayed in fraction of whole brain mitochondria from lesioned cortex were 61% and 48%, respectively, higher as compared to controls. The data suggest a preferential localization of ATP-citrate lyase in cholinergic nerve terminals, where it may contribute to the transport of acetyl-CoA from the mitochondrial to the cytoplasmic compartment. They provide evidence on differential distribution of acetyl-CoA in subcellular compartments of cholinergic and non-cholinergic nerve terminals. There are also indications that cholinergic activity affects acetyl-CoA level and its intracellular distribution in glial and other non-cholinergic cortical cells.  相似文献   

14.
Abstract: The release of acetylcholine (ACh) and ATP from pure cholinergic synaptosomes isolated from the electric organ of Torpedo was studied in the same perfused sample. A presynaptic ATP release was demonstrated either by depolarization with KCl or after the action of a venom extracted from the annelid Glycera convoluta (GV). The release of ATP exhibited similar kinetics to that of ACh release and was therefore probably closely related to the latter. The ACh/ATP ratio in perfusates after KCl depolarization was 45; this was much higher than the ACh/ATP ratio in cholinergic synaptic vesicles, which was 5. The ACh/ATP ratio released after the action of GV was also higher than that of synaptic vesicles. These differences are discussed. The stoichiometry of ACh and ATP release is not consistent with the view that the whole synaptic vesicle content is released by exocytosis after KCl depolarization, as is the case for chromatin cells in the adrenal medulla.  相似文献   

15.
The presence of Chol-1, an antigen identified in the plasma membrane of cholinergic electromotor nerve terminals of Torpedo marmorata, was investigated in Torpedo electric organ after 3, 6, and 9 weeks' denervation. Denervation was monitored by the cessation of stimulus-evoked discharge potentials, by the reduction in nerve terminals seen morphologically, and by the decrease in ACh and ChAT contents. The content of ganglioside-bound sialic acid did not show any appreciable change with time. Some modification of ganglioside pattern on TLC was observed after 9 weeks' denervation. The presence of Chol-1 after denervation was assayed by its activity in inhibiting the selective complement-induced lysis of the cholinergic subpopulation of guinea pig cortical synaptosome which is mediated by the anti-Chol-1 antiserum. Denervation did not affect Chol-1 immunoreactivity although it did alter the distribution of the immunoreactivity among gangliosides. The possible significance of the results is discussed.  相似文献   

16.
Intact synaptosomes isolated from the electric organ of the electric ray Torpedo marmorata contain, at their surface, enzyme activities for the hydrolysis of externally applied nucleoside phosphates. The diazonium salt of sulfanilic acid, as a low-molecular-weight, slowly permeating, covalent inhibitory agent, selectively blocks these enzyme activities and leaves intracellular lactate dehydrogenase intact. The ectoenzymes comprise both a nucleoside triphosphate and diphosphate phosphohydrolase, as well as a 5'-nucleotidase. Activity of nonspecific ectophosphatases is absent. The nucleoside triphosphatase hydrolyzes almost equally well ATP, GTP, CTP, UTP, and ITP and is activated to a similar degree by Mg2+ or Ca2+. It has a high affinity for ATP (Km for ATP in the presence of Mg2+, 75 microM; in the presence of Ca2+, 66 microM). Maximal rates in the presence of Mg2+ and Ca2+ were very similar (34.8 and 32.5 nmol of Pi/min/mg of synaptosomal protein, respectively). Either Mg-ATP or Ca-ATP can act as a true substrate. ADP inhibits hydrolysis of ATP, but AMP is without effect. The nucleoside triphosphatase is not inhibited significantly by a number of inhibitors of mitochondrial Mg2+-ATPase or of Ca2+ + Mg2+-ATPases. It is, however, considerably inhibited by filipin and quercitin. The capacity of intact synaptosomes to hydrolyze also extracellular ADP, GDP, AMP, GMP, and IMP suggests that the nucleoside triphosphatase is part of an enzyme chain that causes complete hydrolysis of the respective nucleoside triphosphate to the nucleoside. We conclude that the cholinergic nerve terminals of the Torpedo electric organ can hydrolyze ATP released on coexocytosis with acetylcholine via an ectonucleoside triphosphatase activity that is different from known endogenous nerve terminal ATPases. The final product of the hydrolysis, adenosine, can then be salvaged by the nerve terminal for resynthesis of ATP. Other possible physiological functions of the ectonucleotidases are discussed.  相似文献   

17.
In the Torpedo electric organ, a modified nerve-muscle system, type A botulinum toxin blocked the release of acetylcholine (ACh) quanta, both neurally evoked and spontaneous. At the same time, the toxin increased the release of a class of small miniature potentials (the subminiature potentials), reduced the ATP and more the creatine phosphate content of the tissue, and impaired the activity of creatine kinase (CK). Thus, we compared this pattern of changes with those provoked by 1-fluoro-2,4-dinitrobenzene (FDNB), an efficient inhibitor of CK. As expected, FDNB rapidly inactivated CK, which resulted in a profound depletion of ATP whereas the stores of creatine phosphate were preserved. In addition, FDNB caused conspicuous morphological alterations of nerve endings and ACh depletion. This agent also suppressed evoked and spontaneous quantal release whereas the occurrence of subminature potentials was markedly increased. Diamide, a penetrating thiol oxidizing substance, provoked first a transient rise in quantal ACh release and then blockade of transmission with, again, production of a large number of subminiature potentials. Creatine phosphate was depleted in the tissue by diamide, the ATP content reduced, and CK activity partly inhibited. The morphology of nerve terminals did not show obvious changes with either diamide or botulinum toxin at the stage of transmission failure. Although the three poisons acted by different mechanisms, this resulted in a rather similar pattern of physiological changes: failure of quantal release and enhancement of subquantal release. These results and experiments on synaptosomes indicated that CK inhibition was probably a crucial mechanism for FDNB but not for diamide or botulinum intoxication.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Using an affinity-purified monospecific polyclonal antibody against bovine brain synapsin I, the distribution of antigenically related proteins was investigated in the electric organs of the three strongly electric fish Torpedo marmorata, Electrophorus electricus, Malapterurus electricus and in the rat diaphragm. On application of indirect fluorescein isothiocyanate-immunofluorescence and using alpha-bungarotoxin for identification of synaptic sites, intense and very selective staining of nerve terminals was found in all of these tissues. Immunotransfer blots of tissue homogenates revealed specific bands whose molecular weights are similar to those of synapsin Ia and synapsin Ib. Moreover, synapsin I-like proteins are still attached to the synaptic vesicles that were isolated in isotonic glycine solution from Torpedo electric organ by density gradient centrifugation and chromatography on Sephacryl-1000. Our results suggest that synapsin I-like proteins are also associated with cholinergic synaptic vesicles of electric organs and that the electric organ may be an ideal source for studying further the functional and molecular properties of synapsin.  相似文献   

19.
Narcine brasiliensis electric organ was stimulated to fatigue in vivo. Electrical display of organ output and biochemical assay of bound acetylcholine (ACh) and ATP in isolated vesicles were used to assess the state of fatigue relative to denervated control organs of the same fish. A morphometric analysis of the fate of the synaptic vesicle populations in the nerve terminals was carried out. Statistically significant morphological changes in vesicle populations and plasma membranes were observed between control and fatigued electroplaque stacks from individual fish. Pooled data from several fish were used to evaluate the possible role of the different vesicle types in neurotransmission. Fatigue resulted in the loss of 49% of the total vesicle population and a 76% loss of vesicles with bound calcium (Ca). An approximately equivalent increase in the nerve-terminal plasma membrane area was measured. This was predominantly in the form of fingerlike protrusions and/or invaginations of the terminals which were present in the control organs but which were significantly increased by stimulation. Vesicle attachments to the nerve terminal membrane were reduced by 90%. This suggests that the failure in transmission may be due to reduction in the number of vesicles which are loaded with transmitter and can attach to the terminal membrane. The Ca-binding capacity of the lost vesicles was not transferred to the plasma membranes. This result was interpreted as support for the hypothesis that vesicle-bound ATP provides the Ca-binding site.  相似文献   

20.
1. Isolated nerve terminals (T-sacs and synaptosomes) prepared from the purely cholinergic Torpedo electric organ have been studied for their ability to incorporate and metabolise [2-3H] adenosine and to degrade 5'-AMP to adenosine. 2. A temperature-dependent, saturable uptake system for adenosine was found with kinetic properties similar to nucleoside transport systems in other cells. The uptake system in Torpedo nerve terminals was inhibited by 2'-deoxyadenosine, a known inhibitor of adenosine transport. 3. Intraterminal adenosine is rapidly metabolised to a number of products including AMP, ADP and ATP. 4. Isolated nerve terminals contain considerable 5'-nucleotidase activity, most of which resides on the outer face of the external membrane. The Km of the enzyme is congruent to 5 micron and it is inhibited by a phosphonate analogue of ADP, alpha-beta-methylene-ADP. It is suggested that this 5'-nucleotidase plays an important role in the production of adenosine from a nucleotide pool in the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号