首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as “ER stress”. Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

2.
Irreversible perturbations in the homeostasis of the endoplasmic reticulum (ER) are thought to lead to apoptosis and cell loss in a number of important human diseases, including Alzheimer disease, Parkinson disease, and type 2 diabetes. However, the exact mechanisms that lead from ER stress to cell death remain incompletely understood. Recent work has shown that the BCL-2 family of proteins plays a central role in regulating this form of cell death, both locally at the ER and from a distance at the mitochondrial membrane.  相似文献   

3.
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.  相似文献   

4.
The endoplasmic reticulum (ER) is central for many essential cellular activities, such as folding, assembly and quality control of secretory and membrane proteins, disulfide bond formation, glycosylation, lipid biosynthesis, Ca2+ storage and signaling. In addition, this multifunctional organelle integrates many adaptive and/or maladaptive signaling cues reporting on metabolism, proteostasis, Ca2+ and redox homeostasis. We are beginning to understand how these functions and pathways are integrated with one another to regulate homeostasis at cell, tissue and organism levels. The mechanisms underlying the introduction of the proper set of disulfide bonds into secretory proteins (oxidative folding) are strictly related to redox homeostasis, ER stress sensing and signaling and provide a good example of the integration systems operative in the early secretory compartment.  相似文献   

5.
Apoptosis is an intricately regulated process required for the health and homeostasis of living systems. The mitochondrial apoptotic pathway depends on the BCL-2 family of pro- and anti-apoptotic members whose interactions form a complex network of checks and balances in regulating cell fate. A diverse set of signals recruits distinct BH3-domain only BCL-2 proteins to trigger activation of the executioner proteins BAX and BAK. In addition to protein components of the apoptotic machinery, literature of the past several decades supports crucial functions for lipids in apoptosis and cooperation between lipid metabolism and BCL-2 proteins. In this review we present the two key examples of ceramide and cardiolipin in apoptosis, focusing particularly on BCL-2 family-regulated pathways at the mitochondrial level. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   

6.
7.
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Therefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to MS. In addition, this review also puts emphasis on the biological insights gained from these studies regarding the molecular functions of the ER including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis and detoxification and drug metabolism.  相似文献   

8.
Apoptosis is a conserved genetic program critical for the development and homeostasis of the immune system. During the early stages of lymphopoiesis, growth factor signaling is an essential regulator of homeostasis by regulating the survival of lymphocyte progenitors. During differentiation, apoptosis ensures that lymphocytes express functional antigen receptors and is essential for eliminating lymphocytes with dangerous self-reactive specificities. Many of these critical cell death checkpoints during immune development are regulated by the BCL-2 family of proteins, which is comprised of both pro- and antiapoptotic members, and members of the tumor necrosis factor death receptor family. Aberrations in the expression or function of these cell death modulators can result in pathological conditions including immune deficiency, autoimmunity, and cancer. This review will describe how apoptosis regulates these critical control points during immune development.  相似文献   

9.
The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype.  相似文献   

10.
Apoptosis is a genetically controlled cell death process that is required for normal development and tissue homeostasis. Suppression of apoptosis can confer a growth advantage to cells and contribute to cancer; many cancers are relatively resistant to apoptosis, including that induced by radiation or chemotherapeutics. Mutations which inactivate pro-apoptotic or activate anti-apoptotic proteins in cancer cells are therefore likely to be responsible for some of these differences. BCL-2 family proteins are key regulators of apoptosis and there is evidence supporting a role for mutation of BCL-2 family proteins in cancer. This includes well established events such as activation of BCL-2 via translocations in follicular lymphoma, as well as more recent observations implicating activation of Bcl-XL expression and frameshift and missense mutations of BAX and BCL-2 in cancer.  相似文献   

11.
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress (ERS), and triggers the unfolded protein response (UPR) that consequently reduces accumulation of unfolded proteins by increasing the quantity of ER chaperones. Calumenin, a Ca2+-binding protein with multiple EF hand motifs, which is located in the ER/SR, is highly expressed during the early developmental stage of the heart, similar to other ER-resident chaperones. The aim of this study was to investigate the functional role of calumenin during ERS in the heart. Like other chaperones (e.g., GRP94 and GRP78), calumenin expression was highly upregulated during ERS induced by 10 μg/ml tunicamycin, but attenuated in the presence of 500 μM PBA, the chemical chaperone in neonatal rat ventricular cardiomyocytes (NRVCs). Upon 7.5-fold overexpression of calumenin using a recombinant adenovirus system, the expression levels of ERS markers (GRP78, p-PERK, and p-elF2α) and ER-initiated apoptosis markers (CHOP and p-JNK) were reduced, whereas the survival protein BCL-2 was upregulated during ERS compared to the control. Evaluation of cell viability by TUNEL assay showed that apoptosis was also significantly reduced by calumenin overexpression in ERS-induced cells. Taken together, our results suggest that calumenin plays an essential role in the alleviation of ERS in neonatal rat cardiomyocytes.  相似文献   

12.
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways. Guest Editors: Frank Madeo and Slaven Stekovic.  相似文献   

13.
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.  相似文献   

14.
Multiple Functions of BCL-2 Family Proteins   总被引:1,自引:0,他引:1  
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.  相似文献   

15.
16.
All gamma herpesviruses and a few other viruses encode at least one homologue of the mammalian cell death inhibitor BCL-2. Gamma herpesviruses are associated with human and animal lymphoid and epithelial tumours. However, the role of these viral BCL-2 homologues in the virus replication cycle or in human disease is not known, though recent developments show progress in this area. The structure of viral BCL-2 family protein, KSBcl-2, is similar to that of cellular family members, but viral BCL-2 proteins differ functionally from the cellular proteins, apparently escaping the regulatory mechanisms to which their cellular counterparts are subjected. Thus, exploring the biochemical and biological functions of the viral BCL-2 family proteins will increase our understanding of their role in virus infections and will undoubtedly teach us something about their cellular kin.  相似文献   

17.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

18.
Pancreatic beta cells have well‐developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS‐PAGE coupled with HPLC‐MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes‐causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 ( http://proteomecentral.proteomexchange.org/dataset/PXD001081 ).  相似文献   

19.
Endoplasmic reticulum stress response and neurodegeneration   总被引:9,自引:0,他引:9  
Paschen W  Mengesdorf T 《Cell calcium》2005,38(3-4):409-415
  相似文献   

20.
Members of the BCL-2-related antiapoptotic family of proteins have been shown previously to regulate ATP/ADP exchange across the mitochondrial membranes and to prevent the loss of coupled mitochondrial respiration during apoptosis. We have found that BCL-2/BCL-x(L) can also improve mitochondrial oxidative phosphorylation in cells harboring pathogenic mutations in mitochondrial tRNA genes. The effect of BCL-2 overexpression in mutated cells was independent from apoptosis and was presumably associated with a modulation of adenine nucleotide exchange between mitochondria and cytosol. These results suggest that BCL-2 can regulate respiratory functions in response to mitochondrial distress by regulating the levels of adenine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号