首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
OSBP (oxysterol-binding protein) homologues, ORPs (OSBP-related proteins), constitute a 12-member family in mammals. We employed an in vitro [3H]25OH (25-hydroxycholesterol)-binding assay with purified recombinant proteins as well as live cell photo-cross-linking with [3H]photo-25OH and [3H]photoCH (photo-cholesterol), to investigate sterol binding by the mammalian ORPs. ORP1 and ORP2 [a short ORP consisting of an ORD (OSBP-related ligand-binding domain) only] were in vitro shown to bind 25OH. GST (glutathione S-transferase) fusions of the ORP1L [long variant with an N-terminal extension that carries ankyrin repeats and a PH domain (pleckstrin homology domain)] and ORP1S (short variant consisting of an ORD only) variants bound 25OH with similar affinity (ORP1L, K(d)=9.7x10(-8) M; ORP1S, K(d)=8.4 x10(-8) M), while the affinity of GST-ORP2 for 25OH was lower (K(d)=3.9x10(-6) M). Molecular modelling suggested that ORP2 has a sterol-binding pocket similar to that of Saccharomyces cerevisiae Osh4p. This was confirmed by site-directed mutagenesis of residues in proximity of the bound sterol in the structural model. Substitution of Ile249 by tryptophan or Lys150 by alanine markedly inhibited 25OH binding by ORP2. In agreement with the in vitro data, ORP1L, ORP1S, and ORP2 were cross-linked with photo-25OH in live COS7 cells. Furthermore, in experiments with either truncated cDNAs encoding the OSBP-related ligand-binding domains of the ORPs or the full-length proteins, photo-25OH was bound to OSBP, ORP3, ORP4, ORP5, ORP6, ORP7, ORP8, ORP10 and ORP11. In addition, the ORP1L variant and ORP3, ORP5, and ORP8 were cross-linked with photoCH. The present study identifies ORP1 and ORP2 as OSBPs and suggests that most of the mammalian ORPs are able to bind sterols.  相似文献   

2.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a family of sterol and phosphoinositide binding proteins conserved in eukaryotes. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and control the activity of enzymatic effectors or assembly of protein complexes, with impacts on signaling, vesicle transport, and lipid metabolism. An increasing number of protein interaction partners of ORPs have been identified, providing clues of their involvement in multiple aspects of cell regulation.The functions assigned for mammalian ORPs include coordination of sterol and sphingolipid metabolism and mitogenic signaling (OSBP), control of ER-late endosome (LE) contacts and LE motility (ORP1L), neutral lipid metabolism (ORP2), cell adhesion (ORP3), cholesterol eggress from LE (ORP5), macrophage lipid homeostasis, migration and high-density lipoprotein metabolism (ORP8), apolipoprotein B-100 secretion (ORP10), and adipogenesis (ORP11). The anti-proliferative ORPphilin compounds target OSBP and ORP4, revealing a function of ORPs in cell proliferation and survival. The Saccharomyces cerevisiae OSBP homologue (Osh) proteins execute multifaceted functions in sterol and sphingolipid homeostasis, post-Golgi vesicle transport, as well as phosphatidylinositol-4-phosphate and target of rapamycin complex 1 (TORC1) signaling. These observations identify ORPs as coordinators of lipid signals with an unforeseen variety of cellular processes.  相似文献   

3.
Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.  相似文献   

4.
Sterols, essential components of eukaryotic membranes, are actively transported between cellular membranes. Although it is known that both vesicular and non-vesicular means are used to move sterols, the molecules and molecular mechanisms involved have yet to be identified. Recent studies point to a key role for oxysterol binding protein (OSBP) and its related proteins (ORPs) in nonvesicular sterol transport. Here, evidence that OSBP and ORPs are bona fide sterol carriers is discussed. In addition, I hypothesize that ATPases associated with various cellular activities regulate the recycling of soluble lipid carriers and that the Niemann Pick C1 protein facilitates the delivery of sterols from endosomal membranes to ORPs and/or the ensuing membrane dissociation of ORPs.  相似文献   

5.
Oxysterols are potent signalling lipids that directly bind liver X receptors (LXRs) and a subset of oxysterol binding protein (OSBP) related proteins (ORPs). It is relatively well established that the oxysterol-regulated function of LXRs is to control the expression of genes involved in reverse cholesterol transport, catabolism of cholesterol, and lipogenesis. In contrast, the mechanisms by which oxysterols and ORPs affect cellular lipid metabolism have remained poorly understood. In this review, we summarize the information available on function of the ORPs and compare the two families of proteins binding oxysterol to demonstrate the different responses that similar lipids can elicit within cells. The other focus is on the membrane targeting determinants and the protein interaction partners of ORPs, which provide interesting clues to the mode(s) of ORP action. Specifically, we suggest a model in which a general property of ORPs is to function at membrane contact sites, specialized zones of communication between two different organelles.  相似文献   

6.
PURPOSE OF REVIEW: Oxysterol binding protein was discovered in the 1980s as a cytosolic high-affinity receptor for oxysterols, but its function has remained enigmatic. Families of genes/proteins with sequence homology to oxysterol binding protein have been identified in eukaryotes from yeast to man, indicating that these proteins, denoted as oxysterol binding protein-related proteins (ORPs), serve a fundamental purpose conserved in evolution. This review discusses recent findings that provide important clues to the mode of action of these proteins. RECENT FINDINGS: The long variant of ORP1 is induced upon differentiation of monocytes to macrophages and has capacity to enhance the trans-activation potential of liver X receptors, indicating a function in macrophage lipid metabolism. Important clues to ORP function were provided by the finding that most family members carry an endoplasmic reticulum targeting motif, while the amino-terminal regions of the proteins have targeting specificities for other organelles. Extensive splice variation occurs within the gene family, suggesting that a large number of distinct protein products are encoded. Further implications were obtained for a possible role of a family member in tumor cell metastasis. SUMMARY: ORPs constitute a novel family of proteins implicated in cellular lipid metabolism and different aspects of cell regulation. The function of several family members is connected with cellular sterol metabolism, and there is evidence for a role of oxysterol binding protein in lipid transport from the endoplasmic reticulum. Recently, a model on the function of these proteins at membrane contact sites, specialized zones of communication between two different organelles, has been presented.  相似文献   

7.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) comprise a large gene family with sterol/lipid transport and regulatory activities. ORP4 (OSBP2) is a closely related paralogue of OSBP, but its function is unknown. Here we show that ORP4 binds similar sterol and lipid ligands as OSBP and other ORPs but is uniquely required for the proliferation and survival of cultured cells. Recombinant ORP4L and a variant without a pleckstrin homology (PH) domain (ORP4S) bind 25-hydroxycholesterol and extract and transfer cholesterol between liposomes. Two conserved histidine residues in the OSBP homology domain ORP4 are essential for binding phosphatidylinositol 4-phosphate but not sterols. The PH domain of ORP4L also binds phosphatidylinositol 4-phosphate in the Golgi apparatus. However, in the context of ORP4L, the PH domain is required for normal organization of the vimentin network. Unlike OSBP, RNAi silencing of all ORP4 variants (including a partial PH domain truncation termed ORP4M) in HEK293 and HeLa cells resulted in growth arrest but not cell death. ORP4 silencing in non-transformed intestinal epithelial cells (IEC)-18 caused apoptosis characterized by caspase 3 and poly(ADP-ribose) polymerase processing, DNA cleavage, and JNK phosphorylation. IEC-18 transformed with oncogenic H-Ras have increased expression of ORP4L and ORP4S proteins and are resistant to the growth-inhibitory effects of ORP4 silencing. Results suggest that ORP4 promotes the survival of rapidly proliferating cells.  相似文献   

8.
In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation of transport from the PM to the ER, rather than from the ER to LDs. Double knockdown of ORP1S and ORP2 inhibited sterol transport from the PM to the ER and LDs, suggesting a physiological role for these ORPs in the process. A two phenylalanines in an acidic tract (FFAT) motif in ORPs that mediates interaction with VAMP-associated proteins (VAPs) in the ER was not necessary for the enhancement of sterol transport by ORPs. However, VAP-A and VAP-B silencing slowed down PM-to-LD sterol transport. This was accompanied by enhanced degradation of ORP2 and decreased levels of several FFAT motif-containing ORPs, suggesting a role for VAPs in sterol transport by stabilization of ORPs.  相似文献   

9.
Oxysterol-binding proteins (OSBPs) and oxysterol-binding-protein related proteins (ORPs) are encoded by most eukaryotic genomes examined to date; however, they have not yet been characterized in plants. Here we report the identification and characterization of PiORP1, an ORP of Petunia inflata that interacts with the cytoplasmic kinase domain of a receptor-like kinase, named PRK1, of P. inflata. PiORP1 is phosphorylated by PRK1 in vitro and therefore may be involved in PRK1 signaling during pollen development and growth. RNA gel blot analysis showed that PiORP1 and PRK1 had very similar expression patterns in developing pollen, mature pollen and pollen tubes. GFP fusion proteins of PiORP1 localized in the plasma membrane of pollen tubes at distinct foci and its PH domain alone was sufficient to mediate this localization. The sequence for the oxysterol-binding domain of PiORP1 was used to search the genome of Arabidopsis; 12 ORPs were identified and phylogenetic analysis revealed that they fell into two distinct clades, consistent with the ORPs of other eukaryotes. RT-PCR analysis showed that all 12 Arabidopsis ORPs were expressed; 10 were expressed in most of the tissues examined under normal growth conditions, but only three were expressed in pollen. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. GenBank accession number for PiORP1: DQ241801  相似文献   

10.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.  相似文献   

11.
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.  相似文献   

12.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

13.
Oxysterol binding protein-related protein 2 (ORP2) is a member of the oxysterol binding protein family, previously shown to bind 25-hydroxycholesterol and implicated in cellular cholesterol metabolism. We show here that ORP2 also binds 22(R)-hydroxycholesterol [22(R)OHC], 7-ketocholesterol, and cholesterol, with 22(R)OHC being the highest affinity ligand of ORP2 (Kd 1.4 × 10−8 M). We report the localization of ORP2 on cytoplasmic lipid droplets (LDs) and its function in neutral lipid metabolism using the human A431 cell line as a model. The ORP2 LD association depends on sterol binding: Treatment with 5 μM 22(R)OHC inhibits the LD association, while a mutant defective in sterol binding is constitutively LD bound. Silencing of ORP2 using RNA interference slows down cellular triglyceride hydrolysis. Furthermore, ORP2 silencing increases the amount of [14C]cholesteryl esters but only under conditions in which lipogenesis and LD formation are enhanced by treatment with oleic acid. The results identify ORP2 as a sterol receptor present on LD and provide evidence for its role in the regulation of neutral lipid metabolism, possibly as a factor that integrates the cellular metabolism of triglycerides with that of cholesterol.  相似文献   

14.
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.  相似文献   

15.
16.
Members of the oxysterol binding protein (OSBP) family are involved in diverse biological processes, including non-vesicular sterol transport and vesicle trafficking. The mechanisms by which OSBPs integrate functionally with developmental and physiological processes remain elusive. Here, we report the in vivo analysis of OSBP function in the model organism Drosophila. Osbp mutants are male-sterile and exhibit defects in individualization, the process by which each spermatid is packaged into its own membrane. Overexpression of OSBP leads to post-eclosion behaviour defects that can be suppressed by co-expression of endoplasmic reticulum-specific VAP family proteins. Most notably, FAN, a testis-specific VAP protein, acts together with OSBP genetically and physically to regulate the individualization process. OSBP-positive and sterol-enriched speckles are found at the leading edge of the individualization complex in wild type but not in Osbp or fan mutants, suggesting that sterol trafficking might play key roles during the membrane-remodelling phase of individualization. In addition, Osbp mutants that are fed additional sterols partially recover fertility, implying that male sterility is attributable to sterol shortage. Thus, we have identified an OSBP- and FAN-mediated sterol requirement in Drosophila spermatogenesis.  相似文献   

17.
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.  相似文献   

18.
Families of oxysterol-binding protein (ORP) homologues are present in eukaryotes from yeast to man. Their hallmark feature is a characteristic ligand binding domain that, for several family members, has been shown to accommodate different oxysterols and/or cholesterol. ORPs of the “long” subtype contain targeting determinants for the endoplasmic reticulum and to other organelle membranes, the most prominent of which are phosphoinositide-binding pleckstrin homology domains, while “short” ORPs comprise a ligand binding domain with little additional sequences. There is increasing evidence that both long and short ORPs can be enriched at membrane contact sites, junctions of the endoplasmic reticulum with other organelles, where they are suggested to execute regulatory or sterol transfer functions. In this review we discuss the current evidence for putative roles of ORPs as sterol sensors or transporters.  相似文献   

19.
20.
Proteins/genes showing high sequence homology to the mammalian oxysterol binding protein (OSBP) have been identified in a variety of eukaryotic organisms from yeast to man. The unifying feature of the gene products denoted as OSBP-related proteins (ORPs) is the presence of an OSBP-type ligand binding (LB) domain. The LB domains of OSBP and its closest homologue bind oxysterols, while data on certain other family members suggest interaction with phospholipids. Many ORPs also have a pleckstrin homology (PH) domain in the amino-terminal region. The PH domains of the family members studied in detail are known to interact with membrane phosphoinositides and play an important role in the intracellular targeting of the proteins. It is plausible that the ORPs constitute a regulatory apparatus that senses the status of specific lipid ligands in membranes, using the PH and/or LB domains, and mediates information to yet poorly known downstream machineries. Functional studies carried out on the ORP proteins in different organisms indicate roles of the gene family in diverse cellular processes including control of lipid metabolism, regulation of vesicle transport, and cell signalling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号