首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Summary Haustoria ofTriphysaria pusilla andT. versicolor subsp.faucibarbata from a natural habitat were analysed by light and electron microscopy. The keel-shaped edge of the secondary haustorium generally splits the epidermis and cortex of the host root parallel to the root axis, and penetrates to the host vascular tissue. Anticlinally elongated epidermal cells of the haustorium constitute most of the host/parasite interface. Some of these epidermal cells are divided by oblique cell walls. Some of their oblique daughter cells as well as some undivided epidermal cells differentiate into xylem elements. Single epidermal cells occasionally intrude into the vascular tissue of the host and individual host cells can be invaded. The surface area of the plasmalemma in parasitic parenchymatous interface cells is increased by the differentiation of wall labyrinths characteristic of transfer cells and by the development of membrane-lined cytoplasmic tubules or flattened sacs which become embedded in the partly lignified interface cell-wall. Mycorrhizal fungal hyphae enter the xylem bridge in some haustoria. Implications of these observations for the function of the haustorium are discussed.  相似文献   

2.
A fertilised Caenorhabditis elegans embryo shows an invariable pattern of cell division and forms a multicellular body where each cell locates to a defined position. Mitotic spindle orientation is determined by several preceding events including the migration of duplicated centrosomes on a nucleus and the rotation of nuclear-centrosome complex. Cell polarity is the dominant force driving nuclear-centrosome rotation and setting the mitotic spindle axis in parallel with the polarity axis during asymmetric cell division. It is reasonable that there is no nuclear-centrosome rotation in symmetrically dividing blastomeres, but the mechanism(s) which suppress rotation in these cells have been proposed because the rotations occur in some polarity defect embryos. Here we show the nuclear-centrosome rotation can be induced by depletion of RPN-2, a regulatory subunit of the proteasome. In these embryos, cell polarity is established normally and both asymmetrically and symmetrically dividing cells are generated through asymmetric cell divisions. The nuclear-centrosome rotations occurred normally in the asymmetrically dividing cell lineage, but also induced in symmetrically dividing daughter cells. Interestingly, we identified RPN-2 as a binding protein of PKC-3, one of critical elements for establishing cell polarity during early asymmetric cell divisions. In addition to asymmetrically dividing cells, PKC-3 is also expressed in symmetrically dividing cells and a role to suppress nuclear-centrosome rotation has been anticipated. Our data suggest that the expression of RPN-2 is involved in the mechanism to suppress nuclear-centrosome rotation in symmetrically dividing cells and it may work in cooperation with PKC-3.  相似文献   

3.
The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical-basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types. Here, we identify Mushroom body defect (Mud) as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.  相似文献   

4.
The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis.  相似文献   

5.
The cell division axis determines the position of daughter cells and is therefore critical for cell fate. During vertebrate neurogenesis, most cell divisions take place within the plane of the neuroepithelium (Das, T., Payer, B., Cayouette, M., and Harris, W.A. (2003). In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37, 597-609. Haydar, T.F., Ang, E., Jr., and Rakic, P. (2003). Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci U S A 100, 2890-5. Kosodo, Y., Roper, K., Haubensak, W., Marzesco, A. M., Corbeil, D., and Huttner, W. B. (2004). Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314-24). The cellular constraints responsible for this preferential orientation are poorly understood. Combining electroporation and time-lapse confocal imaging of chick neural progenitors, the events responsible for positioning the mitotic spindle and their dependence on RhoA were investigated. The results indicate that the spindle forms with a random orientation. However, the final orientation of cell divisions is dependent on two main factors: (i) an early rotation of the spindle that aligns it within the plane of the neuroepithelium, and (ii) a specific limitation of spindle oscillations, despite free rotation around the apico-basal axis. Expressing a dominant-negative RhoA leads to apico-basal cell divisions after a correct initial rotation of the spindle. Our data reveal a specific role for RhoA in the maintenance of spindle orientation, prior to anaphase. Thus, RhoA could be a key player potentially regulated by the neurogenic program or by the neural stem cell environment to control the balance between planar and apico-basal divisions, during normal or pathological development.  相似文献   

6.
7.
Summary Ultrastructural observations on monoplastidic root tip cells ofIsoetes andSelaginella demonstrate two important phenomena associated with preprophasic preparation for mitotic cell division, 1. the preprophase band and 2. precise orientation of the dividing plastid relative to the preprophase band. Both of these phenomena accurately predict the future plane of cell division. The plastid divides in a plane parallel to the spindle and each cell inherits a single plastid which caps the telophase nucleus. When succesive transverse divisions occur, the plastid migrates prior to prophase from a position near an old transverse wall to a lateral position in the cell. The plastid is oriented with its median constriction precisely intersected by the plane of the preprophase band. When a longitudinal division follows a transverse division, the plastid remains in its position adjacent to an old transverse wall where it is bisected by the plane of the longitudinally oriented preprophase band microtubules.  相似文献   

8.
Summary The arrangement of chromosome arms in metaphases and anaphases has been studied inVicia faba root meristem cells. During metaphase, the long chromosome arms are aligned parallel to the spindle axis. As a consequence, at the onset of anaphase, one chromatid can move straight ahead to the spindle pole whereas the other has to invert its orientation. Specially in narrow cells it has been observed frequently that some chromatids move in a reverse orientation to the pole, i.e., they move telomere-first instead of centromere-first. This behaviour results in a chromatid which protrudes beyond the main group of late anaphase or telophase chromatids. It is dicussed that the most likely explanation for the phenomenon is that in narrow cells chromatid behaviour is influenced by steric hindrance by the tightly packed surrounding chromatids and microtubules. When there is insufficient room, some chromatids are unable to make the required U-turn. Under such conditions the kinetochore of a non-inverted chromatid pulls the chromatid in a reverse orientation to the pole. An alternative explanation, i.e., protruding chromatids being the result of a neocentric activity at the telomere end of a reverse-directed chromatid or the lateral associations of spindle microtubules, failed to find support by electron microscopical studies.  相似文献   

9.
Summary Cortical microtubules (MTs) were visualized in root cortex cells ofHyacinthus orientalis L. using immunofluorescence techniques. Cellular MT orientation was determined adjacent to radial longitudinal and transverse walls of root tip, uncontracted, contracting, and fully contracted regions. As seen in longitudinal views, MTs formed parallel, apparently helical arrays which were oriented transversely, axially or obliquely depending upon the region. Transverse sectional views showed that MTs adjacent to transverse cell walls formed a variety of patterns which varied with developmental stage and cell location. Microtubules were oriented in crisscross or parallel arrays. The parallel arrays were oriented either parallel, perpendicular or oblique to the radius of the root. There was an apparent temporal progression in MT reorientation from outer cortical to inner cortical cell layers. A resultant progression of reoriented cell growth could account for root contraction. These findings corroborate earlier electron microscopic observations of changing MT orientation accompanying root contraction, and provide cytological evidence to test mathematical and biophysical models of the mechanics of cell expansion.Abbreviations MT microtubule - MF microfibril - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

10.
Arabidopsis thaliana roots have closed apical organization with three initial tiers. The dermatogen/calyptrogen tier consists of two parts-the central initials form the columella root cap, and the peripheral initial cells form the protoderm (epidermis) and the peripheral root cap. These peripheral initials divide in a sequence to form a root cap consisting of interconnected cones. the periblem initial tier forms the ground meristem (cortex). For the first week after germination the periblem consists of one layer of initial cells. The peripheral cells of the tier divide periclinally and then anticlinally (a T-division) to form the two-layered cortex (outer cortex and endodermis). After about one week, all the peripheral cells have divided periclinally forming two initials; the outermost produces the outer cortex while the inner initial produces the endodermis and middle cortex layer. The latter two cells arise via a periclinal division. During this time, other cells within the tier divide periclinally to form a two-layered tier. The plerome forms the cells of the procambium (vascular cylinder) by simple anticlinal divisions followed by longitudinal divisions to fill out the cell files of the vascular cylinder. A survey (27 dicot species in 17 families) of roots with closed apical organization revealed that there are three different types of root cap-concentric cylinders of cells (e.g.Linum), interconnecting cones (e.g.Arabidopsis) or overlapping arcs (e.g.Gossypium). H Lambers Section editor  相似文献   

11.
Summary Cellulose microfibrils (MFs) were visualized on the inner surface of root cortex cell walls ofHyacinthus orientalis L. using a replica technique. Microfibril orientation was determined in radial longitudinal and transverse cell walls of the root tip, uncontracted, contracting, and fully contracted regions of the root. In longitudinal walls, the innermost MFs were ordered and parallel to one another and were oriented transversely, axially or obliquely, depending upon the developmental stage of the region. In transverse walls MFs in a single layer formed crisscross or ordered parallel arrays, depending upon the region. Parallel arrays were oriented either parallel, perpendicular, or oblique to the radius of the root. Inner walls of certain cells in the contracting region had MFs which appeared interrupted over their lengths. In general, these findings parallel earlier immunofluorescence and electron microscopic observations of changing cortical microtubule (MT) orientation accompanying root contraction. The major exception to MT-MF congruence occurred in cells of the actively contracting region. In middle and outer cell layers, MFs appeared short and partially obscured, while MTs in these cells occurred in conspicuous laterally aggregated strands parallel to one another over the length of the cells or were absent. This alteration in MF-MT parallelism may be related to the reorientation in cell growth occurring in the contractile zone or to the collapse of specific cells during the process of root contraction.Abbreviations MF microfibril - MT microtubule  相似文献   

12.
Summary The first of two major steps in the infection process in roots ofParasponia rigida (Ulmaceae) following inoculation byRhizobium strain RP501 involves the invasion ofRhizobium into the intercellular space system of the root cortex. The earliest sign of root nodule initiation is the presence of clumps of multicellular root hairs (MCRH), a response apparently unique amongRhizobium-root associations. At the same time or shortly after MCRH are first visible, cell divisions are initiated in the outer root cortex of the host plant, always subjacent to the MCRH. No infection threads were observed in root hairs or cortical cells in early stages. Rhizobial entry through the epidermis and into the root cortex was shown to occur via intercellular invasion at the bases of MCRH. The second major step in the infection process is the actual infectionper se of host cells by the rhizobia and formation of typical intracellular infection threads with host cell accommodation. This infection step is probably the beginning of the truly symbiotic relationship in these nodules. Rhizobial invasion and infection are accompanied by host cortical cell divisions which result in a callus-like mass of cortical cells. In addition to infection thread formation in some of these host cortical cells, another type of rhizobial proliferation was observed in which large accumulations of rhizobia in intercellular spaces are associated with host cell wall distortion, deposition of electron-dense material in the walls, and occasional deleterious effects on host cell cytoplasm.  相似文献   

13.
Gunning  B. E. S.  Hughes  J. E.  Hardham  A. R. 《Planta》1978,143(2):121-144
The root of the water fern Azolla is a compact higher-plant organ, advantageous for studies of cell division, cell differentiation, and morphogenesis. The cell complement of A. filiculoides Lam. and A. pinnata R.Br. roots is described, and the lineages of the cell types, all derived ultimately from a tetrahedral apical cell, are characterised in terms of sites and planes of cell division within the formative zone, where the initial cells of the cell files are generated. Subsequent proliferation of the initial cells is highly specific, each cell type having its own programme of divisions prior to terminal differentiation. Both formative and proliferative divisions (but especially the former) occur in regular sequences. Two enantiomorphic forms of root develop, with the dispositions of certain types of cell correlating with the direction, dextrorse or sinistrorse, of the cell-division sequence in the apical cells. Root growth is determinate, the apical cell dividing about 55 times, and its cell-cycle duration decreasing from an initial 10 h to about 4 h during the major phase of root development. Sites of proliferation progress acropetally during aging, but do not penetrate into the zone of formative divisions. The detailed portrait of root development that was obtained is discussed with respect to genetic and epigenetic influences; quantal and non-quantal cell cycles; variation in cell-cycle durations; relationships between cell expansion and cell division: the role of the apical cell; and the limitation of the total number of mitotic cycles during root formation.  相似文献   

14.
The development of the epidermal layer of roots of Zea is traced from the quiescent centre to the zone where root hairs develop. In the zone of cell division a three layered coat forms on the outside of the epidermal cells consisting of the outer epidermal walls, overlaid by a two-layered pellicle composed of a thick fibrillar inner layer of polysaccharide, and a thin fibrillar outer layer of protein. The epidermal cells divide several times in the same longitudinal file but rarely across a radius to give a new longitudinal file. Thus, the radial walls become much thicker than all but the original transverse walls, and packets of up to 32 daughter cells derived from a single initial may be distinguished. The pellicle develops during these divisions as a continuum over the outer walls of the daughter cells. It is proposed that the pellicle provides a stiffening to the forward end of the root which permits it to penetrate soil without bending. Support for this hypothesis is shown by the Zea mays mutant Ageotropic in which the pellicle is absent, the epidermal surface is disorganized, and which grows crookedly through soil. In the zone of extension growth of normal roots of two Zea species the pellicle thins and disappears. Circumferential strips of the pellicle were peeled off the young epidermal cells and could be stretched to twice their length. This deformation is partly the result of the pellicle stretching and breaking above the attachments of the radial walls. After normal thinning of the pellicle, detachment of the radial walls at their outer ends produces a corrugated surface in the proximal zone of the root tips. In dicotyledons (e.g., soybean), there is no similar pellicle, but a stiff root tip is produced by a long multi-layered root cap, the proximal portion of which covers the elongating epidermal surface.  相似文献   

15.
Observations were made of the sequence of division within thecellular packets (groups of cells of common descent) which comprisethe cell files that run the length of the central cortex ofthe primary root meristem ofZea mays. These sequences, and alsothe relative lengths of the cells within the packets recordedat various times during root growth, indicate that cell-filedevelopment can be expressed using one, or a limited number,of deterministic ‘bootstrap’ L-systems which assigndifferent lifespans to sister cells of successive cell generations.The outcome is a regular pattern of divisions from which daughtercells emerge usually with unequal, but definite, lengths. Inthe immediately post-germination stage of root growth, one divisionpathway is especially common in the cortex and generates sequencesof unequal daughters having a particular basi-apical orientation.Later in root growth, the cellular pattern in the cortex indicatesthat this pathway is replaced by another where unequal divisionsare not so marked, but which nevertheless continues to maintaina regular arrangement of differently sized cells. This latterpathway is characteristic of a zone close to the initial cellsof the cortex. It is present at all stages of root growth andspreads along the length of the cortex as the descendants ofthese initials proliferate. The development of the whole corticalcell file can be simulated from knowledge of the growth functionsof the bootstrap systems. The files so generated contain allthe observed cell patterns. The growth functions also predictthe sequence in which cells cease dividing near the proximalmargin of the meristem, but for this it is necessary to incorporatea counter for the number of divisions that will be accomplishedin the cell file. Cytological requirements for the propagationof unequal divisions, together with a consideration of the natureof the division counter, as well as the significance of theswitch in division pathways encountered during early root growth,are discussed in the context of this deterministic model ofcell division. Cell division; root meristem; L-systems; Zea mays  相似文献   

16.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   

17.
Summary Selected nuclear and cytoplasmic changes associated with early differentiation of four cell-types—dermatogen, inner and outer cortex, and endodermis—have been analysed using montages of electron micrographs of median longitudinal sections of young roots ofAzolla pinnata. The area fraction of nucleoplasm occupied by chromocentres (CAF) is smaller in the apical cell than in the nuclei of its most recently formed daughter cells. The CAF also differs between the four cell-types: dermatogen nuclei have a lesser mean CAF and smaller chromocentres than nuclei of the endodermis; cortical cell nuclei have intermediate values. These differences may reflect changes in nuclear activity during cell differentiation. The area fraction occupied by the vacuome (VAF) differs between the apical cell and its daughters: the apical cell seems to retain most of the vacuome at division, while the daughter cells receive less vacuolate cytoplasm. Of the four cell-types analysed, the cortical cells develop a large VAF the quickest; the dermatogen is slower to become vacuolate. Cells in the dermatogen and outer cortex derive from common mother cells, as do cells in the endodermis and inner cortex, and even the most recently-formed cells in the files of inner and outer cortex are more vacuolated than their sister cells in the other two celltypes. The onset of vacuolation may be triggered by an inductive influence emanating from older vacuolated cells in the same file. The rate of vacuolation in each of the cell-types examined may also be negatively correlated to the intensity of synthesis of protein used to construct cytoplasmic materials.  相似文献   

18.
The spindles in generative cell divisions within the pollen tubes ofCalanthe andImpatiens were revealed by anti-α-tubulin immunofluorescence methods. They were peculiar configurations in which the metaphase chromosomes lay tandemly in some lines along the spindle axis and the sister chromosomes separated anti-parallelly by the spindle elongation during anaphase.  相似文献   

19.
Summary We studied the basal body cycle (including basal body segregation, duplication, migration, and reorientation) in dividing cells of the colonial coccoid green algaChlorosarcina stigmatica using serial thin sections. Although flagella are lacking, all cells examined possess a rudimentary flagellar apparatus composed of two basal bodies linked by a distal striated fibre, two probasal bodies, and four cruciately arranged microtubular roots (2-4-2-4 type). Basal body segregation occurs at preprophase, during which two half-basal apparatuses (each consisting of one basal body, one probasal body, and a left and a right root) migrate into opposite directions. The segregation axis is defined by the two left roots which remain closely associated during segregation and slide along each other. The segregation axis is parallel to the axis of chromosome separation, and perpendicular to the plane of subsequent cell division. Duplication of basal apparatus components does not occur until telophase when daughter basal apparatuses migrate towards the plane of division. At cytokinesis which is effected by the unilateral ingrowth of a septum, each daughter basal apparatus rotates 90° and becomes associated with the new septum.Abbreviations BA basal (body) apparatus - NBBC nucleus-basal body connector  相似文献   

20.
Cai Y  Yu F  Lin S  Chia W  Yang X 《Cell》2003,112(1):51-62
Drosophila neuroblast asymmetric divisions generate two daughters of unequal size and fate. A complex of apically localized molecules mediates basal localization of cell fate determinants and apicobasal orientation of the mitotic spindle, but how daughter cell size is controlled remains unclear. Here we show that mitotic spindle geometry and unequal daughter cell size are controlled by two parallel pathways (Bazooka/DaPKC and Pins/G alpha i) within the apical complex. While the localized activity of either pathway alone is sufficient to mediate the generation of an asymmetric mitotic spindle and unequal size neuroblast daughters, loss of both pathways results in symmetric divisions. In sensory organ precursors, Bazooka/DaPKC and Pins/G alpha i localize to opposite sides of the cortex and function in opposition to generate a symmetric spindle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号