首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
The brain contains two molecular forms of Na,K-ATPase designated alpha found in non-neuronal cells and neuronal soma and alpha + found in axolemma. Previously we have shown that the abundance of both forms (determined by immunoblots) as well as Na,K-ATPase activity increases 10-fold between 4 days before and 20 days after birth (Schmitt, C. A., and McDonough, A. A. (1986) J. Biol. Chem. 261, 10439-10444). Hypothyroidism in neonates blunts these increases. Neonatal, but not adult brain Na,K-ATPase is thyroid hormone (triiodothyronine, T3) responsive. This study defines the period during which brain Na,K-ATPase responds to T3. The start of the critical period was defined by comparing Na,K-ATPase activity and alpha and alpha + abundance in hypothyroid and euthyroid neonates (birth to 30 days of age). For all parameters, euthyroid was significantly higher by 15 days of age. The end of the critical period was defined by dosing hypothyroid neonates with T3 daily (0.1 micrograms/g body weight) beginning at increasing days of age, and sacrificing all at 30 days then assaying enzyme activity and abundance. Those starting T3 treatment on or before day 19 were restored to euthyroid levels of Na,K-ATPase activity and abundance, while those starting T3 treatment on or after day 22 remained at hypothyroid levels of enzyme activity and abundance. We conclude that brain Na,K-ATPase alpha and alpha + isoforms are sensitive to T3 by as late as 15 days of age and that the period of thyroid hormone responsiveness is over by 22 days.  相似文献   

4.
Previous suggestions (Hubert, J. J., Schenk, D. B., Skelly, H., and Leffert, H. L. (1986) Biochemistry 25, 4156-4163) of tissue-specific isoforms or nonexistence of hepatic Na,K-ATPase beta 1-subunits were reevaluated by quantifying beta 1-subunit mRNA levels in quiescent and proliferating liver. RNA was extracted from caudate liver lobes of sham or 67% hepatectomized adult rats and from primary cultures of adult rat hepatocytes that simulate developmental and regenerating growth transitions. Northern blot analysis with a 32P-labeled full-length Na,K-ATPase beta 1-cDNA probe (Mercer, R. W., Schneider, J. W., Savitz, A., Emmanuel, J., Benz, T.J., and Levenson, R. (1986) Mol. Cell. Biol. 6, 3884-3890) revealed four (approximately 2.7, 2.4, 1.7-1.8, and 1.5 kilobases) low abundance mRNA species in quiescent tissue, freshly isolated hepatocytes, and cultured hepatocytes derived from lag or late stationary phase (1-2 days or 11-12 days postplating, respectively). In contrast, proliferating liver from 4 h post-67% hepatectomized rats or cultured hepatocytes in logarithmic growth phase contained levels of beta 1-subunit mRNA which exceeded quiescent levels by 4-35-fold. Membrane Na,K-ATPase activity also increased 2-3-fold during liver regeneration 12-24 h after partial hepatectomy. When proliferation in vitro was augmented by transforming growth factor-alpha, a hepatocyte mitogen, or reinitiated in late stationary phase by a change to fresh culture medium containing rat serum, beta 1-subunit mRNA expression was restimulated 4-20-fold. Parallel measurements of alpha-tubulin mRNA induction showed relatively nonsynchronous or invariant changes during hepatocyte proliferative transitions; similar results were obtained after Northern blots with a sodium pump alpha I-subunit cDNA probe. No detectable hybridization signals were observed when either rat kidney or hepatocyte RNAs from freshly isolated and cultured cells or regenerating tissues were probed for the sodium pump 3.4-kilobase mRNA beta 2-isoform. These observations suggest that enhanced hepatic beta 1-subunit gene expression is linked specifically to growth-associated increases in Na,K-ATPase activity, hepatocyte proliferation, and mitogen activation.  相似文献   

5.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   

6.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

7.
Regulation of Na,K-ATPase biosynthesis in developing Artemia salina   总被引:1,自引:0,他引:1  
Regulation of the biosynthesis of the sodium- and potassium-activated adenosine triphosphatase (Na,K-ATPase) (EC 3.6.1.3) was studied in the developing brine shrimp, Artemia salina. Measurement of levels of the subunits of the Na,K-ATPase by radioimmunoassay indicated the presence of both alpha and beta subunits in undeveloped cysts and developing embryos prior to the appearance of enzymatic activity. The quantity of each subunit increased dramatically between 8 and 24 h of development and then reached a plateau at about 32 h. The quantities of translationally active mRNA alpha and mRNA beta were also determined. Undeveloped cysts contained mRNA alpha and mRNA beta, and the amounts increased 9- and 3-fold, respectively, during the first 24 h of development. The data suggest that the increase in Na,K-ATPase activity was at least in part due to increases in protein synthesis related to changes in mRNA levels. The data also suggest involvement of additional regulatory mechanisms. The alpha-subunit has been detected as two molecular weight forms (alpha 1 and alpha 2) which demonstrate changes in relative amounts during development (Peterson, G. L., Churchill, L., Fisher, J. A., and Hokin, L. E. (1982) J. Exp. Zool. 221, 295-308). We show here that this was not due to changes in mRNA alpha 1 and mRNA alpha 2.  相似文献   

8.
In this paper we establish the response of LLC-PK1/Cl4 cells, a pig kidney cell line, to incubation in medium containing 0.25 mM K+. The amounts of the Na,K-ATPase alpha and beta subunits, determined by Western blot, increase coordinately to greater than 2-fold over control by 24 h in low K+ and remained elevated for the duration of the study period (48 h). Na,K-ATPase activity, measured enzymatically, increased 1.4-fold by 24 h and remained elevated. In order to determine if this response was initiated pretranslationally, alpha and beta subunit mRNA levels were determined by Northern blot analysis. While there was no change in alpha-mRNA levels, beta levels increased significantly, to 1.9-fold over control by 6 h of treatment and remained elevated. This selective increase in beta-mRNA was accompanied by 1.6- and 3.1-fold increases in the respective rates of accumulation of newly synthesized alpha and beta subunits, assessed by immunoprecipitating subunits from pulse-labeled cells. The degradation rates of mature Na,K-ATPase subunits did not change during 16 h of exposure to low K+, but after 16 h there was a selective decrease in the alpha degradation rate, relative to control. These results suggest that increased pretranslational regulation of the beta subunit alone is sufficient to increase accumulation of both alpha and beta subunits. These findings support the notion that in LLC-PK1 cells newly synthesized beta is rate-limiting and thus regulates, through alpha beta assembly, the number of pumps transported to the plasma membrane.  相似文献   

9.
The present study provides the first evidence that the abundance of catalytic alpha1-subunit of Na,K-ATPase increases in the course of T cell blast transformation. Immunodepressant cyclosporin A at anti-proliferative doses diminished the induction of alpha1 protein in activated lymphocytes. Furthermore, in competent T cells, IL-2 increases both the transport activity of Na/K pump and the content of Na,K-ATPase alpha1 protein in a time-dependent manner. A correlation was found between the long-term elevation in ouabain-sensitive Rb influxes and the increase in alpha1 protein content in late activated T cells. These results suggest that (1) the increased expression of Na,K-ATPase proteins underlie the cell cycle-dependent upregulation of ion pump during T cell transformation, and (2) IL-2 is involved in the regulated expression of Na,K-ATPase in human lymphocytes.  相似文献   

10.
11.
12.
Thyroidal induction of the plasma membrane Na,K-ATPase is a characteristic of mammalian tissues that exhibit a thermogenic response to this hormone. To facilitate analysis of the pathways mediating this response, we defined the conditions needed for reproducible thyroidal induction of this enzyme, as well as mitochondrial cytochrome c oxidase, in established cell lines in tissue cultures. In confluent monolayers of nontransformed mouse embryo fibroblasts (C3H/10T1/2), triiodothyronine modulated Na,K-ATPase and cytochrome c oxidase activities in a concentration- and time-dependent manner. Similar increases in Na,K-ATPase activity were obtained in other rodent embryo cells (SWISS/3T3 and NIH/3T3) and in human fibroblasts (WI-38). In contrast, neoplastic transformation of all of these cell lines resulted in loss of inducibility of Na,K-ATPase by thyroid hormone, regardless of the initiating mechanism (i.e. spontaneous, x-ray, chemicals, viruses).  相似文献   

13.
The change of blood pressure and the induction of Na, K-ATPase alpha 1-subunit mRNA have been investigated in the renal cortex of aldosterone-treated hypertensive rat. The increase of blood pressure by aldosterone-treatment for 25 days was decreased by the treatment of amiloride or spironolactone. The level of Na, K-ATPase alpha 1-subunit mRNA of the renal cortex in aldosterone-treated rat was increased than that in the control, and its increase was repressed by treatment of spironolactone, but not altered by the treatment of amiloride. This result suggests that the increase of Na, K-ATPase alpha 1-subunit mRNA in the renal cortex of aldosterone-treated hypertensive rat may be related with the direct induction of Na, K-ATPase mRNA without the increase of Na-traffic through Na-channel.  相似文献   

14.
A W Shyjan  R Levenson 《Biochemistry》1989,28(11):4531-4535
We have developed a panel of antibodies specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the rat Na,K-ATPase. TrpE-alpha subunit isoform fusion proteins were used to generate three antisera, each of which reacted specifically with a distinct alpha subunit isotype. Western blot analysis of rat tissue microsomes revealed that alpha 1 subunits were expressed in all tissues while alpha 2 subunits were expressed in brain, heart, and lung. The alpha 3 subunit, a protein whose existence had been inferred from cDNA cloning, was expressed primarily in brain and copurified with ouabain-inhibitable Na,K-ATPase activity. An antiserum specific for the rat Na,K-ATPase beta subunit was generated from a TrpE-beta subunit fusion protein. Western blot analysis showed that beta subunits were present in kidney, brain, and heart. However, no beta subunits were detected in liver, lung, spleen, thymus, or lactating mammary gland. The distinct tissue distributions of alpha and beta subunits suggest that different members of the Na,K-ATPase family may have specialized functions.  相似文献   

15.
The gamma subunit of the Na,K-ATPase is a small membrane protein that copurifies with the alpha and beta subunits of the enzyme. Strong evidence that the gamma subunit is a component of the Na,K-ATPase comes from studies indicating that the subunit is involved in forming the site for cardiac glycoside binding. We have isolated and characterized the cDNAs coding the gamma subunit from several species. The gamma subunit is a highly conserved protein consisting of 58 amino acids with a molecular weight of 6500. Hydropathy analysis reveals the presence of a single hydrophobic domain that is sufficient to cross the membrane. There are no sites for N-linked glycosylation. Northern blot analysis revealed that the gamma subunit mRNA is expressed in a tissue-specific fashion and is present in all tissues characterized. gamma-specific antibodies have been used to verify that the sequenced protein is the same protein labeled by [3H]nitroazidobenzoyl-ouabain (NAB-ouabain), and that this protein, the gamma subunit of the Na,K-ATPase, has a distribution pattern along nephron segments that is identical with the alpha subunit. In addition, coimmunoprecipitation of the alpha, beta and gamma subunits demonstrate specific association of the subunits. These results are consistent with the notion that the gamma subunit is specifically associated with and may be an important component of the Na,K-ATPase.  相似文献   

16.
Rhythmic changes in activity following a circadian schedule have been described for several enzymes. The possibility of circadian changes in Na,K-ATPase activity was studied in homogenates of rat kidney cortex cells. Male Sprague-Dawley rats were kept on a schedule of 12h light (06:00-18:00 h) and 12 h darkness (18:00-06:00 h) for 2 weeks. At the end of the conditioning period, one rat was killed every 2 h, until completion of a 24 h cycle. Outermost kidney cortex slices were prepared, homogenized and assayed for Na,K-ATPase activity. The whole procedure was repeated six times. Na,K-ATPase activity shows an important oscillation (2 cycles/24 h). Peak activities were detected at 09:00 and 21:00 h, whereas the lowest activities were detected at 15:00 and 01:00-03:00 h. The highest activity was 40+/-3 nmoles Pi mg protein(-1)min(-1) (09:00 h), and the lowest was 79+/-3 nmoles Pi mg protein(-1)min(-1) (15:00 h). The amount of the Na+-stimulated phosphorylated intermediate is the same for the 09:00 h and 15:00 h homogenates. Preincubation of 09:00 h kidney cortex homogenates with blood plasma drawn from rats at either 03:00 h or 15:00 h, significantly inhibited their Na,K-ATPase activity. This inhibition was not seen when the preincubation was carried out with either 09:00 h or 21:00 h blood plasma. The striking oscillation (2 cycles/24 h) of the Na,K-ATPase activity of rat kidney cortex cells is ascribed to the presence of an endogenous inhibitor in blood plasma.  相似文献   

17.
We have characterized cDNAs coding for three Na,K-ATPase alpha subunit isoforms from the rat, a species resistant to ouabain. Northern blot and S1-nuclease mapping analyses revealed that these alpha subunit mRNAs are expressed in a tissue-specific and developmentally regulated fashion. The mRNA for the alpha 1 isoform, approximately equal to 4.5 kb long, is expressed in all fetal and adult rat tissues examined. The alpha 2 mRNA, also approximately equal to 4.5 kb long, is expressed predominantly in brain and fetal heart. The alpha 3 cDNA detected two mRNA species: a approximately equal to 4.5 kb mRNA present in most tissues and a approximately equal to 6 kb mRNA, found only in fetal brain, adult brain, heart, and skeletal muscle. The deduced amino acid sequences of these isoforms are highly conserved. However, significant differences in codon usage and patterns of genomic DNA hybridization indicate that the alpha subunits are encoded by a multigene family. Structural analysis of the alpha subunits from rat and other species predicts a polytopic protein with seven membrane-spanning regions. Isoform diversity of the alpha subunit may provide a biochemical basis for Na,K-ATPase functional diversity.  相似文献   

18.
19.
The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium   总被引:3,自引:0,他引:3  
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号