首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

2.
3.
Questions: Can small and isolated high‐conservation value forests (e.g. designated woodland key habitats) maintain old‐growth forest characteristics and functionality in fragmented landscapes? To what extent have past disturbances (natural and anthropogenic) influenced the development of old‐growth characteristics of these forests? How long does it take for selectively cut stands to attain conditions resembling old‐growth forests? Location: Southern boreal zone of central Sweden. Methods: We linked multiple lines of evidence from historical records, biological archives, and analyses of current forest structure to reconstruct the forest history of a boreal landscape, with special emphasis on six remaining core localities of high‐conservation value forest stands. Results: Our reconstructions revealed that several of these stands experienced wildfires up to the 1890s; all had been selectively harvested in the late 1800s; and all underwent substantial structural and compositional reorganization over the following 100‐150 years. This time interval was sufficient to recover considerable amounts of standing and downed dead wood (mean 60.3 m3 ha?1), a range of tree ages and sizes (mean basal area 32.6 m2 ha?1), and dominance of shade‐tolerant spruce. It was insufficient to obtain clearly uneven tree age structures and large (>45 cm diameter) living and dead trees. Thus, these forests contain some, but not all, important compositional and structural attributes of old‐growth forests, their abundance being dependent on the timing and magnitude of past natural and anthropogenic disturbances. Our landscape‐level analysis showed marked compositional and structural differences between the historical forest landscape and the present landscape, with the latter having a greater proportion of young forests, introduction of non‐native species, and lack of large trees and dead wood. Conclusions: The remnant high‐conservation value stands were not true representatives of the pre‐industrial forests, but represent the last vestige of forests that have regenerated naturally and maintained a continuous tree cover. These traits, coupled with their capacity for old‐growth recovery, make them valuable focal areas for conservation.  相似文献   

4.
Abstract. The fragmentation and deterioration of old‐growth forest habitat by modern forestry have become a major threat to species diversity in Fennoscandia. In order to develop a conservation strategy for the remaining diversity it is essential to identify the existing diversity and to develop appropriate conservation and monitoring programs. For these purposes indicators of conservation value for administrative prioritization are required. This study examines the predictability of plant and fungal species richness on two spatial scales on 46 isolated old‐growth forest islands (0.17 ‐ 12 ha) in a forest‐wetland mosaic. We explore (1) to what extent area, isolation and stand structure variables can explain the variation in species richness and (2) if richness patterns of individual species groups correlate. Isolation showed no relation to species richness. Area explained 50 ‐ 70% of the variation in total species richness and was positively related to the density of crustose lichens and Red‐list species in island interiors. Stand structure variables explained 28 ‐ 66% of the residual variation in total species richness after controlling for island size, and 15 ‐ 73% of the variation in density of species in island interiors. The highest predictability of species richness was found among substrate‐specific fungi and Red‐list species. Different stand structure variables were found to explain richness in the different species groups, and only among a few species groups species richness correlated. Thus, species richness of one single species group is unlikely to be a good indicator for total biodiversity. The results show that measurements of stand size and stand structure variables may be a strong complementary tool, and sometimes a substitute to extensive species inventories when one aims to estimate and monitor plant and fungal species diversity in old‐growth Picea abies forests.  相似文献   

5.
Abies magnifica (Red fir) forests in the Cascade Range and Sierra Nevada of California are composed of groups, or patches, of even-sized individuals that form structurally complex stands. Patches may be even-aged, resulting from synchronous post-disturbance establishment, or multi-aged, reflecting continuous recruitment of seedlings moderately tolerant of shade. We analyze the population structure (i.e. age, size, and spatial patterning) of A magnifica, and associated A concolor, White fir, and reconstruct the disturbance history of two mature to old-growth A. magnifica forests in order to determine the relationship between disturbance and forest structure. Within both stands examined, the distributions of A. magnifica seedlings, saplings, and small understory trees were clumped, with clump sizes corresponding to the area of canopy gaps. Gaps were created by frequent wildfire (mean fire return interval of 41 yr) and by windstorms. Severe fire initiated mass establishment of Abies magnifica, whereas gaps created by windthrowreleasedalreadyestablishedindividuals. Lowinten-sity fire stimulated little recruitment, but Red fir established continuously during fire-free intervals. Thus, the complex age and structures of Red fir forests reflect both episodic and continuous recruitment, as determined by the type and severity of natural disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号