首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

2.
Abstract

Detailed knowledge of factors controlling fire regime is a prerequisite for efficient fire management. We analyzed the fire selectivity of given forest vegetation classes both in terms of fire frequency and fire size for the present fire regime (1982–2005) in Canton Ticino (southern Switzerland). To this end, we investigated the dataset in four categories (all fires, anthropogenic winter fires, anthropogenic summer fires, and natural summer fires) and performed 1000 random Monte Carlo simulations on frequency and size. Anthropogenic winter and summer fires have a similar selectivity, occurring mostly at low elevations in chestnut stands, broadleaved forests, and in the first 50 m from the forest edge. In winter half of the fires in chestnut stands are significantly larger than 1.0 ha and the average burnt area in some coniferous forests tends to be high. Lightning fires seem to occur more frequently in spruce stands and less often in the summer‐humid chestnut and beech stands and the 50–100 m buffer area. In beech forests, in mixed forests, and in the spruce stands affected by natural fire in summer, the fires tend to be small in size. The selectivity observed, especially the selectivity of anthropogenic fires in terms of fire frequency, seems to be also related to geographical parameters such as altitude and aspect, and to anthropogenic characteristics such as closeness to roads or buildings.  相似文献   

3.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

4.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

5.
Fire risk indices are useful tools for fire prevention actions by fire managers. A fire ignition is either the result of lightning or human activities. In European Mediterranean countries most forest fires are due to human activities. However, lightning is still an important fire ignition source in some regions. Integration of lightning and human fire occurrence probability into fire risk indices would be necessary to have a complete picture of the causal agents and their relative importance in fire occurrence. We present two methods for the integration of lightning and human fire occurrence probability models at 1 × 1 km grid cell resolution in two regions of Spain: Madrid, which presents a high fire incidence due to human activities; and Aragón, one of the most affected regions in Spain by lightning-fires. For validation, independent fire ignition points were used to compute the Receiver Operating Characteristic (ROC)-Area Under de Curve (AUC) and the Mahalanobis Distance. Results in Madrid are satisfactory for the human fire occurrence probability model (AUC~0.7) but less suitable for the lightning and the integrated models. In Aragón the fit for the human model is reasonable (AUC~0.7) whereas for the integration methods is practically useless (AUC~0.58).  相似文献   

6.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

7.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

8.
The behavior of artificial radionuclides and microelements during forest fire events in the pine forests of Altai krai is investigated. It is shown that forest fires are accompanied by active air migration of 90Sr, 137Cs, Hg, Cd, As, and other elements, additionally polluting components of forest biogeocenosis, at least, on the territories adjacent to the fire areas. The activity of element migration depends mainly on the biogeochemical characteristics of the elements, on the humidity of forest combustible materials, and on weather conditions. During the post-fire periods, redistribution of the elements occurs as a result of their transportation with melted snow and rainwater. Revegetation on firest fire burn areas additionally changes the element distribution over the burnt territories.  相似文献   

9.
10.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

11.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

12.
抚仙湖是云贵高原著名的断陷深水湖,其沉积物蕴藏着流域地质历史时期丰富的环境信息。对钻取自该湖的900cm 湖泊沉积物岩芯进行花粉/炭屑分析及花粉数据的主成分分析表明,抚仙湖流域的植被、气候与火灾在过去的13 300年经历了5个阶段的变化:(1)13 300—10 400cal.a BP,植被以松林为主,伴有山地暗针叶林和常绿阔叶林,表明该时期气候较为冷湿,森林火灾多发,在后期随着温度和湿度的降低,森林火灾愈加频繁。(2)10 400—5 700cal.a BP,松林收缩,常绿阔叶林扩张,出现一定数量的落叶阔叶林,显示该时期气候偏暖偏干;此阶段早期随着气候变暖变干森林火灾的发生延续上阶段高发的状态,直到9 500cal.a BP后随着湿度的增加森林火灾明显减少。(3)5 700—1 800cal.a BP,松林变化较小,常绿/落叶阔叶林比重增大,首次出现了暖热性的枫香林,显示该时期暖湿的气候特征,火灾发生频率低。(4)1 800—500cal.a BP,松林扩张,阔叶林收缩,本阶段后期草本植被比重开始增加,显示该时期气候相对冷干,森林火灾发生频率较高。(5)500cal.a BP至今,松林收缩,落叶阔叶树种增多,草本植物花粉明显增多,显示该时期气候温凉偏干,森林火灾发生频率降低。  相似文献   

13.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

14.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

15.
Cofre de Perote National Park (CPNP) in Veracruz, Mexico is part of the Transmexican Volcanic Belt, and its Pinus hartwegii forests reflect a balance between the various natural factors that represent the region's climatology and hydrology. Like many other areas in this region, the historical fire regimes of these forests and their relationship with climate are unknown, but are needed for sustainable management plans. The main objectives of this study were to reconstruct the historical fire regime in a Pinus hartwegii forest and decipher the influenced of climate. Our investigation focused in two study areas, Valle la Teta (VT) and Barranca Honda (BH). The VT study area was divided into three sites based on humidity and elevation: 1) Humid (VTH), 2) Dry Low (VTDL) and 3) Dry High (VTDH). The approximated area for each site was ​​30, 30, 35 and 50 ha, for VTH, VTDL, VTDH and BH, respectively. We collected 162 fire scarred samples to reconstruct the fire history for the last 550 years (1461−2013). The fire scarred samples contained 1240 fire scars, with most fires occurring in spring (95 %) or summer (5%). Prior to 1973, these sites were characterized by a frequent surface fire regime. In all four sites, the mean fire intervals ranged from 5 to 6 years (for fires that scarred ≥ 10 % of the samples) and 13–23 years (for fires that scarred ≥ 25 % of the samples). Extensive fires (≥ 10 %) coincided with significantly dry conditions based on the Standardized Precipitation Index (SPI), influenced by El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation Index (PDO). We also found a significant relationship between fire occurrence and ENSO, both in its warm phase, El Niño (21 fires ≥ 10 %) and in its cold phase, La Niña (32 fires ≥ 10 %). Synchronization of the cold phase of ENSO (La Niña) with the cold phase of the PDO (negative), facilitated severe drought conditions, resulting in fires with the greatest spatial extent. Since 1973, extensive fires have been absent from the study area most likely due to anthropogenic activities including active fire suppression. These results show a strong climate-fire relationship in these high elevation forests. The lack of fire in the last four decades is concerning and could potentially lead to unnatural stand-replacing fires, unless the historical fire regime is restored to maintain natural processes and increase forest resilience.  相似文献   

16.
Abstract. Surface fuels were examined in 48 stands of the Canadian mixed‐wood boreal forest. Tree canopy was characterized with the point‐centred quadrant method and stands were characterized as deciduous, mixed‐deciduous, mixed‐coniferous or coniferous according to the percentage of conifer basal area. Woody debris loadings were measured with the line intersect method and the litter, duff, shrub loads and depths or heights were sampled with various quadrats. No significant difference was found among stand types for total woody debris load, large basal diameter shrub loads and load or depth of litter and duff. However, conifer stands had significantly heavier loads of small diameter elements (twigs and shrubs) and conifer pieces were more numerous within these stands than in deciduous stands. The BEHAVE prediction system was used to evaluate the impact of these differences on the potential of fire ignition in situations where topography and weather were constant. The qualitative and quantitative changes in fuels, resulting from species replacement and fast decay rates, influence fire hazard. Simulations of fire behaviour showed that in the mixed‐wood boreal forest fires were less intense and spread more slowly in deciduous stands than in mixed or coniferous stands. Moreover, spring fires were more intense than summer fires, and differences between seasons increased with the increase of deciduous basal area.  相似文献   

17.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

18.
A new fire model is proposed which estimates areas burnt on a macro‐scale (10–100 km). It consists of three parts: evaluation of fire danger due to climatic conditions, estimation of the number of fires and the extent of the area burnt. The model can operate on three time steps, daily, monthly and yearly, and interacts with a Dynamic Global Vegetation Model (DGVM), thereby providing an important forcing for natural competition. Fire danger is related to number of dry days and amplitude of daily temperature during these days. The number of fires during fire days varies with human population density. Areas burnt are calculated based on average wind speed, available fuel and fire duration. The model has been incorporated into the Lund‐Potsdam‐Jena Dynamic Global Vegetation Model (LPJ‐DGVM) and has been tested for peninsular Spain. LPJ‐DGVM was modified to allow bi‐directional feedback between fire disturbance and vegetation dynamics. The number of fires and areas burnt were simulated for the period 1974–94 and compared against observations. The model produced realistic results, which are well correlated, both spatially and temporally, with the fire statistics. Therefore, a relatively simple mechanistic fire model can be used to reproduce fire regime patterns in human‐ dominated ecosystems over a large region and a long time period.  相似文献   

19.
The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate – including short‐ and long‐term droughts – are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire‐related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.  相似文献   

20.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号