首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of allergy‐causing mites is conventionally based on morphological characters. However, molecular taxonomy using ribosomal DNA (rDNA) may be particularly useful in the analysis of mite cultures and purified mite fractions in the production of allergenic extracts. Full‐length internal transcribed spacers (ITS1 and ITS2) were obtained from Dermatophagoides farinae, Dermatophagoides pteronyssinus, Dermatophagoides microceras and Euroglyphus maynei (Astigmata: Pyroglyphidae), Glycyphagus domesticus and Lepidoglyphus destructor (Astigmata: Glycyphagidae), Tyrophagus fanetzhangorum, Tyrophagus putrescentiae, Tyrophagus longior, Tyrophagus neiswanderi, Acarus farris and Acarus siro (Astigmata: Acaridae), and Blomia tropicalis (Astigmata: Echymopodidae), using mite‐specific primers. Polymerase chain reaction (PCR) products were digested with HpaII and RsaI restriction enzymes in order to produce species‐specific PCR restricted fragment length polymorphism (RFLP) profiles. A semi‐nested re‐amplification step was introduced before the RFLP in order to apply the method to environmental samples. Results demonstrate that rDNA sequences can be used for the unambiguous identification of mite species. The PCR–RFLP system allows the identification of species in purified mite fractions when the availability of intact adult mite bodies for morphological identification is limited. This reliable and straightforward PCR–RFLP system and the rDNA sequences obtained can be of use in the identification of allergy‐causing mite species.  相似文献   

2.
Isolates of the genera Monoraphidium Kom.‐Legn., Ankistrodesmus Corda and Raphidocelis Hindák emend. Marvan et al. were cultured from two areas in Minnesota and North Dakota, USA. These isolates were identified to species level (when possible), using light microscopy and standard monographs and then characterized by 18S rDNA sequence analysis. Phylogenetic analyses indicated that in some cases, 18S rDNA sequences from these isolates were very similar, but not identical to the sequences of other isolates of the same morphospecies from different parts of the world. However, some isolates that were identified as the same species actually belong to different lineages within the Selenastraceae, whereas other isolates with identical or nearly identical 18S rDNA sequences possessed rather different morphologies. Overall, our data suggest that the application of a broad morphospecies concept to the Selenastraceae has resulted in an underestimation of the species diversity of this family and probably erroneous conclusions about the distribution of species.  相似文献   

3.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

4.
The genus Hemicycliophora (Nematoda: Hemicycliophoridae) contains 132 valid species of plant‐parasitic nematodes, collectively known as ‘sheath nematodes’. Hemicycliophora spp. are characterized morphologically by a long stylet with rounded basal knobs and a cuticular sheath, present in juvenile and adult stages. Populations of 20 valid and 14 putative species of Hemicycliophora and Loofia from several countries were characterized morphologically using light (LM) and scanning electron microscopy (SEM) and molecularly using the D2‐D3 segments of 28S rRNA and internal transcribed spacer (ITS) rRNA gene sequences. LM and SEM observations provided new details on the morphology of these species. PCR‐restriction fragment length polymorphisms (PCR‐RFLPs) of the D2‐D3 of 28S rDNA were proposed for identification of the species. Phylogenetic relationships within populations of 36 species of the genus Hemicycliophora using 102 D2‐D3 of 28S rDNA and 97 ITS rRNA gene sequences as inferred from Bayesian analysis are reconstructed and discussed. Ancestral state reconstructions of diagnostic characters (body and stylet length, number of body annuli, shape of vulval lip and tail), using maximum parsimony and Bayesian inference, revealed that none of the traits are individually reliable characters for classifying the studied sheath nematode. The Shimodaira–Hasegawa test rejected the validity of the genus Loofia. This is the most complete phylogenetic analysis of Hemicycliophora species conducted so far. © 2014 The Linnean Society of London  相似文献   

5.
We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder‐Kypke.  相似文献   

6.
Heterodrilus is a group of marine Naididae, common worldwide in subtropical and tropical areas, and unique among the oligochaetes by their tridentate chaetae. The phylogenetic relationships within the group are assessed from the nuclear 18S rDNA gene, and the mitochondrial cytochrome c oxidase subunit I (COI) and 16S rDNA genes. Sequence data were obtained from 16 Heterodrilus species and 13 out‐group taxa; 48 sequences are new for this study. The data were analysed by Bayesian inference. Monophyly of the genus is corroborated by the resulting tree, with Heterodrilus ersei (a taxon representing a small group of species with aberrant male genitalia) proposed to be outside all other sampled species. Although earlier regarded as a member of the subfamily Rhyacodrilinae, both molecular and morphological data seem to support that Heterodrilus is closely related to Phallodrilinae. However, the results are not conclusive as to whether the genus is the sister group of, or a group nested inside, or separate from this latter subfamily. The studied sample of species suggests at least two major clades in Heterodrilus with different geographical distributions, in one of the clades, most species are from the Indo‐West Pacific Ocean, while in the other, the majority are from the Western Atlantic Ocean. Morphological characters traditionally used in Heterodrilus taxonomy are optimized on the phylogenetic tree, revealing a high degree of homoplasy.  相似文献   

7.
Molecular systematic studies have changed the face of algal taxonomy. Particularly at the species level, molecular phylogenetic research has revealed the inaccuracy of morphology‐based taxonomy: Cryptic and pseudo‐cryptic species were shown to exist within many morphologically conceived species. This study focused on section Rhipsalis of the green algal genus Halimeda. This section was known to contain cryptic diversity and to comprise species with overlapping morphological boundaries. In the present study, species diversity within the section and identity of individual specimens were assessed using ITS1–5.8S–ITS2 (nrDNA) and rps3 (cpDNA) sequence data. The sequences grouped in a number of clear‐cut genotypic clusters that were considered species. The same specimens were subjected to morphometric analysis of external morphological and anatomical structures. Morphological differences between the genotypic cluster species were assessed using discriminant analysis. It was shown that significant morphological differences exist between genetically delineated species and that allocation of specimens to species on the basis of morphometric variables is nearly perfect. Anatomical characters yielded better results than external morphological characters. Two approaches were offered to allow future morphological identifications: a probabilistic approach based on classification functions of discriminant analyses and the classical approach of an identification key.  相似文献   

8.
The genus Mustelus is the most species‐rich of the widespread family Triakidae whereby its taxonomy and systematics have been historically challenging. They represent a significant fraction of the shark catches of small‐scale fisheries in the Gulf of California. In order to provide information useful for their management and conservation, the morphological and genetic distinction of the four species found in the northern Gulf of California (M. albipinnis, M. californicus, M. henlei and M. lunulatus) were analyzed. Discriminant analysis of 10 morphometric variables placed each species in a distinct and significantly different region of multivariate morpho‐space. The variables contributing most to their distinction were inter‐nostril width, mouth length, upper and lower labial furrow length, and mouth width. Restriction fragment length polymorphisms (PCR‐RFLP) of the nuclear ITS2 ribosomal DNA (rDNA) confirmed that each species represents a genetically cohesive and independent evolutionary lineage. In spite of the difficulty in differentiating these Mustelus species, a few cephalic measurements are useful to separate them. A PCR‐RFLP assay (using RsaI and MspI on ITS2 rDNA amplicons) is also proposed for the molecular differentiation of these commercially harvested smooth‐hound sharks, constituting the first molecular marker available for their identification. These data provide morphological and genetic tools that can be used to improve their management and conservation.  相似文献   

9.
Six isolates of mineral‐enveloped Strombidinopsis minima‐like species were collected from the coastal waters across several regions in Korea. Morphological observations and molecular analyses were performed. The ribosomal DNA sequences (including small subunit ribosomal DNA, internal transcriber spacer 1‐5.8S ribosomal DNA‐internal transcriber spacer 2; and part of large subunit ribosomal DNA) of these six isolates were compared. Their morphological characteristics were also compared with those of S. minima populations reported. The marked genetic differences (with a similarity range of 96.85–98.48%) in SSU rDNA among these S. minima‐like entities suggest the existence of multiple species. This finding is also supported by morphological variations detected in this study and reported in the literature (e.g. 15–32 collar membranelles in different populations). In addition, S. minima‐like species are clustered with S. batos and S. sinicum, and therefore, our SSU rDNA results support previous results suggesting that the genus Strombidinopsis is not monophyletic in origin. Further collection of morphological and molecular data may facilitate the determination of a new genus carrying mineral‐enveloped Strombidinopsis species.  相似文献   

10.
The Caucasigenini is an endemic radiation of hygromiid land snails from the Caucasus region. A phylogenetic analysis of morphological characters of the genitalia and the shell showed that the morphological characters are insufficient for resolving the relationships within the Caucasigenini. Convergences of the few parsimony informative characters in other groups of the Hygromiidae demonstrate that these characters are not reliable indicators of phylogenetic relationships. Phylogenetic analyses of sequences of cox1, 16S rDNA, 5.8S rDNA, ITS2 and 28S rDNA revealed several well‐supported groups. The relationships among these groups could not be resolved. It is likely that these groups originated in a rapid radiation during the uplift of the Caucasus. Based on the molecular phylogeny, we propose a new classification of the species of the Caucasigenini and establish a new genus, Lazicana gen. n.  相似文献   

11.
The 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment-length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra-specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS-1. Some restriction fragments from WKS-1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS-1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.  相似文献   

12.
13.
14.
In this study, the nitrogen fixing Astragalus glycyphyllos symbionts were characterized by phenotypic properties, restriction fragment length polymorphism (RFLP), and sequences of 16S rDNA. The generation time of A. glycyphyllos rhizobia in yeast extract mannitol medium was in the range 4–6 h. The studied isolates exhibited a low resistance to antibiotics, a moderate tolerance to NaCl, assimilated di- and trisaccharides, and produced acid in medium containing mannitol as a sole carbon source. In the cluster analysis, based on 86 phenotypic properties of A. glycyphyllos symbionts and the reference rhizobia, examined isolates and the genus Mesorhizobium strains were placed on a single branch, clearly distinct from other lineages of rhizobial genera. By the comparative analysis of 16S rRNA gene sequences and 16S rDNA–RFLP, A. glycyphyllos nodulators were also identified as the members of the genus Mesorhizobium. On the 16S rDNA sequence phylogram, the representatives of A. glycyphyllos nodule isolates formed a robust, monophyletic cluster together with the Mesorhizobium species at 16S rDNA sequence similarity of these bacteria between 95 and 99 %. Similarly, the cluster analysis of the combined RFLP–16S rDNA patterns, obtained with seven restriction endonucleases, showed that A. glycyphyllos rhizobia are closely related to the genus Mesorhizobium bacteria. The taxonomic approaches used in this paper allowed us to classify the studied bacteria into the genus Mesorhizobium.  相似文献   

15.
Aim: To study genotypic diversity of isolates of Brochothrix thermosphacta recovered from meat, poultry and fish. Methods and Results: A total of 27 bacteria isolated from 19 samples of meat, poultry and fish were identified phenotypically and genotypically using PCR amplification of 16S‐23S rDNA intergenic transcribed spacer (ITS‐PCR), repetitive sequence‐based PCR (rep‐PCR) and 16S rDNA sequencing. Using ITS‐PCR, all bacteria showed the same DNA profile as the reference strains of Br. thermosphacta, allowing typing of the isolates at species level. Using 16S rDNA sequencing, all isolates were identified, at genus and species level, as Br. thermosphacta. Identification as Br. campestris was observed with a lower, but very close, level of similarity. Rep‐PCR was more discriminatory than ITS‐PCR and allowed differentiation of four subgroups among the isolates. Conclusion: Minor genotypic differences among Br. thermosphacta strains from meat, poultry and fish were observed. Significance and Impact of the Study: A rudimentary exploration of genotypic differences of Br. thermosphacta from meat, poultry and fish resulted in preliminary confirmation of the suitability of ITS‐PCR for typing Br. thermosphacta and confirmed the value of rep‐PCR fingerprinting to discriminate between Br. thermosphacta strains.  相似文献   

16.
The Childiidae sensu Dörjes 1968 comprises the acoel worms characterized by a cone‐shaped penis with muscular or sclerotized elements. Based on differences in body‐wall musculature arrangement, Hooge (2001) recently restricted the family to the genus Childia Graff, 1910 and placed the remaining genera to his new family Actinoposthiidae Hooge 2001 . This rearrangement has been questioned ( Raikova et al. 2004 ). We reconstructed the phylogeny of the Childiidae sensu Dörjes 1968 by means of a total evidence analysis including Histone H3, 28S rDNA and new 18S rDNA sequences, as well as 50 morphological characters. New characters of the muscular system and copulatory organs discovered through confocal laser scanning microscopy of phalloidin‐stained specimens are included in the phylogenetic analysis. A total of 12 taxa (nine ingroup and three outgroup) were used in the parsimony analysis of the 18S data set, which was aligned with different parameters for a sensitivity analysis, and the combined data set (18S + 28S + H3 + morphology). Incongruence in the node support of the groups among the four partitions was very low in the total evidence tree; except for the H3 partition. The conflict observed in the H3 partition is likely due to large homoplasy observed in the synonymous alternatives at both first and third codon positions. All data partitions demonstrated that Actinoposthia beklemischevi Mamkaev 1965 , and the newly defined taxon Childiidae (comprising Childia and Paraphanostoma Westblad 1942 ) are not close relatives. The monophyly of Childia and Paraphanostoma is strongly supported by both the 18S and 28S data partitions. Our study also reveals additional apomorphies uniting Childia with Paraphanostoma from body‐wall musculature, statocyst muscles and male copulatory organ. Muscular system, statocyst muscles, male copulatory organ and nervous system characters proved to be the best characters for taxonomic delimitations of subtaxa within the Childiidae, whereas the seminal bursa (a frequently used character in the taxonomy of Acoela) was highly homoplastic. We also described the body‐wall musculature of six Paraphanostoma species, which is characterized by the reversed arrangement of the longitudinal and circular muscle layers, and by the absence of diagonal muscles on the ventral side of the body and the presence of two types of diagonal muscles on the dorsal side. Childia groenlandica (Levinsen, 1879) is nested among the Paraphanostoma species in our total evidence tree, so we synonymize Paraphanostoma with Childia; all former members of Paraphanostoma are transferred to Childia.  相似文献   

17.
Members of the genus Paramoeba (including Neoparamoeba) (Amoebozoa) are single‐celled eukaryotes of economic and ecological importance because of their association with disease in a variety of marine animals including fish, sea urchins, and lobster. Interestingly, they harbor a eukaryotic endosymbiont of kinetoplastid ancestry, Perkinsela sp. To investigate the complex relationship between Paramoeba spp. and Perkinsela sp., as well as the relationships between different Paramoeba species, molecular data was obtained for four novel isolates. We also acquired new data from the urchin pathogen P. invadens. Comprehensive molecular phylogenetic analyses were carried out using 33 newly obtained 18S rDNA sequences from the host amoebae and 16 new 18S rDNA sequences from their corresponding Perkinsela sp., together with all publicly available 18S molecular data. Intra‐isolate 18S rDNA nucleotide diversity was found to be surprisingly high within the various species of Paramoeba, but relatively low within their Perkinsela sp. endosymbionts. 18S rDNA phylogenies and ParaFit co‐evolution analysis revealed a high degree of congruence between the Paramoeba and Perkinsela sp. tree topologies, strongly suggesting that a single endosymbiotic event occurred in the common ancestor of known Paramoeba species, and that the endosymbionts have been inherited vertically ever since.  相似文献   

18.
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325–355 bp), and nearly complete sequences of 18S rDNA (1768–1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high‐ to mid‐tide zones. © The Willi Hennig Society 2009.  相似文献   

19.
The taxonomy of Acanthamoeba spp., an amphizoic amoeba which causes granulomatous amoebic encephalitis and chronic amoebic keratitis, has been revised many times. The taxonomic validity of some species has yet to be assessed. In this paper, we analyzed the morphological characteristics, nuclear 18s rDNA and mitochondrial 16s rDNA sequences and the Mt DNA RFLP of the type strains of four Acanthamoeba species, which had been previously designated as A. divionensis, A. parasidionensis, A. mauritaniensis, and A. rhysodes. The four isolates revealed characteristic group II morphology. They exhibited 18S rDNA sequence differences of 0.2-1.1% with each other, but more than 2% difference from the other compared reference strains. Four isolates formed a different clade from that of A. castellanii Castellani and the other strains in morphological group II on the phylogenetic tree. In light of these results, A. paradivionensis, A. divionensis, and A. mauritaniensis should be regarded as synonyms for A. rhysodes.  相似文献   

20.
A new genus of a deep-sea ascomycete with one new species, Alisea longicolla, is described based on analyses of 18S and 28S rDNA sequences and morphological characters. A. longicolla was found together with Oceanitis scuticella, on small twigs and sugar cane debris trawled from the bottom of the Pacific Ocean off Vanuatu Islands. Molecular and morphological characters indicate that both fungi are members of Halosphaeriaceae. Within this family, O. scuticella is phylogenetically related to Ascosalsum and shares similar ascospore morphology and appendage ontogeny. The genus Ascosalsum is considered congeneric with Oceanitis and Ascosalsum cincinnatulum, Ascosalsum unicaudatum and Ascosalsum viscidulum are transferred to Oceanitis, an earlier generic name.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号