首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastric secretion of hydrochloric acid requires protons and chloride, yet the mechanisms and regulation of gastric chloride secretion remain unclear. We developed an in vivo technique to simultaneously measure acid/base and chloride secretion into the gastric lumen of anesthetized rats. The cannulated stomach lumen was perfused with weakly pH-buffered chloride-free solution containing a chloride-sensitive fluorophore [5 microM N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE)]. Gastric acid and chloride secretion was detected in gastric effluents by 1) flow-through pH electrode and 2) MQAE fluorescence. Gastric effluent was also collected at 1-min intervals for independent determination of chloride amount by chloridometer. In all conditions, both optical and chemical determinations of chloride report similar amounts of secreted chloride. During luminal perfusion with pH 5 solution, net acid and chloride secretion into the lumen was observed. Pentagastrin stimulated both secretions. In contrast, proton pump inhibition (omeprazole) caused alkalinization of the gastric effluent, but chloride secretion was not diminished. During luminal pH 3 perfusion, net alkali secretion was observed, and chloride secretion at luminal pH 3 was greater than pH 5. When tissue is pretreated with omeprazole at luminal pH 3, the addition of prostaglandin E2 synchronously stimulates both alkali and chloride secretion. Results suggest that both acid and alkali secretions are separately coupled with chloride secretion.  相似文献   

2.
Determination of the effects of spermine on acid secretion by isolated rabbit gastric mucosa shows paradoxical responses at neutral luminal pH. Initial inhibition of acid secretion was followed by a return to near basal rates. However, measurement of mucosal and serosal rates of CO2 release indicated that spermine causes prolonged inhibition of acid secretion. Similar prolonged inhibition is seen with mucosa exposed to an acidic luminal pH. The inhibitory effect of spermine is reversed by the addition of K+ to the mucosal side, suggesting spermine interferes with a K+ site at the secretory membrane. Serosal addition of spermine is without effect. The apparent acid secretory rebound phenomenon observed after the addition of spermine is most likely related to formation of H+ in the luminal bathing solution rather than proton secretion by the mucosa.  相似文献   

3.
Histamine plays an important role in the regulation of gastric acid secretion; however, its role in maintenance of gastric morphology remains unclear. To clarify the necessity of histamine for gastric mucosal development and maintenance, we evaluated two different kinds of mice that lacked either mast cells (one of the gastric histamine-producing cell types) or histidine decarboxylase (HDC; a histamine-synthesizing enzyme). Measurements of stomach weight, intragastric pH, mucosal histamine levels, as well as serum gastrin and albumin levels were performed in mice. Gastric mucosal appearance was examined by immunohistochemical techniques. Although gastric mucosal histamine levels in mast cell-deficient mice were half of those observed in the wild-type mice, intragastric pH, serum gastrin levels, and gastric morphology at 12 mo were unchanged compared with the wild-type mice. In contrast, HDC-deficient mice possessed no detectable gastric histamine, but did exhibit hypergastrinemia, as well as marked increases in intragastric pH and stomach weight compared with the wild-type mice. Histological analysis revealed that 9-mo-old HDC-deficient mice demonstrated hyperplasia in the oxyntic glandular base region, as well as increased numbers of parietal and enterochromaffin-like cells. These results indicate that enterochromaffin-like cell-derived histamine is potentially involved in gastric mucosal morphology regulation.  相似文献   

4.
Recent advancements in molecular biology in the field of taste perception in the oral cavity have raised the possibility for ingested nutrients to be "tasted" in the upper gastrointestinal tract. The purpose of this study was to identify the existence of a nutrient-sensing system by the vagus in the rat stomach. Afferent fibers of the gastric branch increased their firing rate solely with the intragastric application of the amino acid glutamate. Other amino acids failed to have the same effect. This response to glutamate was blocked by the depletion of serotonin (5-HT) and inhibition of serotonin receptor(3) (5-HT(3)) or nitric oxide (NO) synthase enzyme. Luminal perfusion with the local anesthesia lidocaine abolished the glutamate-evoked afferent activation. The afferent response was also mimicked by luminal perfusion with a NO donor, sodium nitroprusside. In addition, the NO donor-induced afferent activation was abolished by 5-HT(3) blockade as well. Altogether, these results strongly suggest the existence of a sensing system for glutamate in the rat gastric mucosa. Thus luminal glutamate would enhance the electrophysiological firing rate of afferent fibers from the vagus nerve of the stomach through the production of mucosal bioactive substances such as NO and 5-HT. Assuming there is a universal coexistence of free glutamate with dietary protein, a glutamate-sensing system in the stomach could contribute to the gastric phase of protein digestion.  相似文献   

5.
The effect of the selective cyclo-oxygenase-type-2 (COX-2) inhibitor etodolac on gastric mucosal integrity and gastric acid secretion was investigated in the rat. Etodolac was given in doses comparable with those being used in man for therapy of rheumatic conditions. The effect of etodolac was studied in the presence of a mild barrier breaker and in the presence of increased rates of endogenous acid secretion. In conscious pylorus-ligated rats, etodolac given intragastrically in 16 or 32 mg /kg for 3 h did not by itself give rise to visible gastric mucosal injury. Etodolac, however, exacerbated gastric mucosal injury evoked by intragastric application of acidified sodium taurocholate (5 mM in 150 mM HCl) in a dose-dependent manner. This effect of edotolac was independent of changes in gastric acid secretory responses. In rats whose gastric acid secretion was stimulated by intraperitoneal histamine (5 mg/kg), and etodolac (given i.g. in doses of 16 or 32 mg/kg) also increased gastric mucosal injury caused by histamine dose-dependently in the 3-h pylorus-ligated rats. Etodolac decreased gastric mucus in the saline- and in the sodium taurocholate-treated rats. In urethane-anaesthetized acute gastric fistula rats, intragastric etodolac (32 mg/kg) did not modify basal gastric acid secretion. Our data suggest that etodolac, a selective COX-2 inhibitor, impairs gastric mucosal resistance and can exacerbate gastric mucosal injury caused by other mucosal barrier breaking agents. Cyclooxygenase type-2 thus contributes to the gastric mucosal defences.  相似文献   

6.
Muscarinic acetylcholine receptors play an important role in the regulation of gastric acid secretion stimulated by acetylcholine; nonetheless, the precise role of each receptor subtype (M(1)-M(5)) remains unclear. This study examined the involvement of M(1), M(3), and M(5) receptors in cholinergic regulation of acid secretion using muscarinic receptor knockout (KO) mice. Gastric acid secretion was measured in both mice subjected to acute gastric fistula production under urethane anesthesia and conscious mice that had previously undergone pylorus ligation. M(3) KO mice exhibited impaired gastric acid secretion in response to carbachol. Unexpectedly, M(1) KO mice exhibited normal intragastric pH, serum gastrin and mucosal histamine levels, and gastric acid secretion stimulated by carbachol, histamine, and gastrin. Pirenzepine, known as an M(1)-receptor antagonist, inhibited carbachol-stimulated gastric acid secretion in a dose-dependent manner in M(1) KO mice as well as in wild-type (WT) mice, suggesting that the inhibitory effect of pirenzepine on gastric acid secretion is independent of M(1)-receptor antagonism. Notably, M(5) KO mice exhibited both significantly lower carbachol-stimulated gastric acid secretion and histamine-secretory responses to carbachol compared with WT mice. RT-PCR analysis revealed M(5)-mRNA expression in the stomach, but not in either the fundic or antral mucosa. Consequently, cholinergic stimulation of gastric acid secretion is clearly mediated by M(3) (on parietal cells) and M(5) receptors (conceivably in the submucosal plexus), but not M(1) receptors.  相似文献   

7.
Afferent neuron-mediated gastric mucosal protection has been suggested to result from the local release of vasodilator peptides such as calcitonin gene-related peptide (CGRP) from afferent nerve endings within the stomach. The present study, therefore, examined whether rat alpha-CGRP, administered via different routes, is able to protect against mucosal injury induced by gastric perfusion with 25% ethanol or acidified aspirin (25 mM, pH 1.5) in urethane-anesthetized rats. Close arterial infusion of CGRP (15 pmol/min) to the stomach, via a catheter placed in the abdominal aorta proximal to the celiac artery, significantly reduced gross mucosal damage caused by ethanol and aspirin whereas mean arterial blood pressure (BP) was not altered. Intravenous infusion of CGRP (50 pmol/min) did not affect aspirin-induced mucosal injury but significantly enhanced ethanol-induced lesion formation. Intravenous CGRP (50 pmol/min) also lowered BP and increased the gastric clearance of [14C]aminopyrine, an indirect measure of gastric mucosal blood flow while basal gastric output of acid and bicarbonate was not altered. Intragastric administration of CGRP (260 nM) significantly inhibited aspirin-induced mucosal damage but did not influence damage in response to ethanol. BP, gastric clearance of [14C]aminopyrine, and gastric output of acid and bicarbonate remained unaltered by intragastric CGRP. These data indicate that only close arterial administration of CGRP to the rat stomach, at doses devoid of a systemic hypotensive effect, is able to protect against both ethanol- and aspirin-induced mucosal damage. As this route of administration closely resembles local release of the peptide in the stomach, CGRP may be considered as a candidate mediator of afferent nerve-induced gastric mucosal protection.  相似文献   

8.
The effects of met-enkephalin and morphine on gastric acid and pepsin secretion and gastric mucosal and total blood flow were studied in anaesthetized dogs with an in vivo chambered secretion stomach preparation. It was found that both agents infused intraarterially caused an increase in histamine-induced acid and pepsin secretion and mucosal and total blood flow. The above responses were significantly blocked by naloxone and nalorphine. In the resting stomach both opiates did not induce secretory changes but they increased mucosal and total blood flow. Met-enkephalin and morphine were also effective after intravenous administration. Met-enkephalin but not morphine fails to stimulate acid secretion if given into the portal vein. The likely mechanism of action of opiates on gastric secretion is discussed and a hypothesis of existence of opiate receptors in the gastric wall is presented.  相似文献   

9.
Nitric oxide (NO) plays a role in regulating the mucosal integrity of the stomach. However, its part in the mucosal defense of the inflamed stomach remains unclear. In the present study, we examined the effects of various NO synthase (NOS) inhibitors on gastric ulcerogenic and acid secretory responses following daily exposure of the stomach to iodoacetamide and investigated the role of each NOS isozyme in gastric protection from subchronic mucosal irritation. Gastric mucosal irritation was induced in rats by addition of 0.1% iodoacetamide to drinking water, and the gastric mucosa was examined on the 6th day. L-NAME (a nonselective NOS inhibitor: 20 mg/kg) or aminoguanidine (a selective iNOS inhibitor: 20 mg/kg) was given s.c. twice 24 h and 3 h before the termination of iodoacetamide treatment. Giving iodoacetamide in drinking water for 5 days produced minimal damage in the stomach with an increase in myeloperoxidase (MPO) activity and lipid peroxidation. Iodoacetamide treatment up-regulated the expression of iNOS mRNA and NO production in the stomach, without affecting nNOS expression. Both L-NAME and aminoguanidine markedly aggravated gastric lesions induced by iodoacetamide treatment, with a further enhancement in MPO activity and lipid peroxidation. Basal acid secretion as determined in pylorous-ligated stomachs was decreased following iodoacetamide treatment, but the response was significantly restored by both L-NAME and aminoguanidine. These results suggest that endogenous NO derived from both cNOS and iNOS is involved in mucosal defense of the inflamed stomach, partly by decreasing acid secretion, and contributes to maintaining mucosal integrity under such conditions.  相似文献   

10.
We recently demonstrated that luminal factors such as osmolality, disaccharides, and mechanical stimulation evoke pancreatic secretion by activating 5-hydroxytryptamine subtype 3 (serotonin-3, 5-HT3) receptors on mucosal vagal afferent fibers in the intestine. We hypothesized that 5-HT released by luminal stimuli acts as a paracrine substance, activating the mucosal vagal afferent fibers to stimulate pancreatic secretion. In the in vivo rat model, luminal perfusion of maltose or hypertonic NaCl increased 5-HT level threefold in intestinal effluent perfusates. Similar levels were observed after intraluminal 10(-5) M 5-HT perfusion. These treatments did not affect 5-HT blood levels. In a separate study, intraduodenal, but not intraileal, 5-HT application induced a dose-dependent increase in pancreatic protein secretion, which was not blocked by the CCK-A antagonist CR-1409. Acute vagotomy, methscopolamine, or perivagal or intestinal mucosal application of capsaicin abolished 5-HT-induced pancreatic secretion. In conscious rats, luminal 10(-5) M 5-HT administration produced a 90% increase in pancreatic protein output, which was markedly inhibited by the 5-HT3 antagonist ondansetron. In conclusion, luminal stimuli induce 5-HT release, which in turn activates 5-HT3 receptors on mucosal vagal afferent terminals. In this manner, 5-HT acts as a paracrine substance to stimulate pancreatic secretion via a vagal cholinergic pathway.  相似文献   

11.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

12.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

13.
Bombesin-like immunoreactivity (BLI) has been demonstrated in neurons of the gastrointestinal tract and gastric BLI secretion can be demonstrated in response to the classical neurotransmitter acetylcholine. Since structurally related peptides VIP, PHI and GRF have to be considered as peptidergic neurotransmitters it was of interest to determine their effect on gastric BLI secretion. Additionally, somatostatin (SLI) and gastrin secretion was examined. The isolated stomach of overnight fasted rats was perfused with Krebs-Ringer buffer via the celiac artery and the effluent was collected via the portal vein. The gastric lumen was perfused with isotonic saline at pH7 or pH2. All four peptides were tested at a dose of 10(-11) M and 10(-8) M at both pH levels and in addition the effect of VIP and PHI was examined at 10(-14) M and 10(-12) M during luminal pH2. At luminal pH7 VIP and PHI stimulated SLI release at 10(-8) M but had no effect on BLI or gastrin secretion. rGRF and hpGRF were both ineffective on SLI and gastrin release while rGRF inhibited and hpGRF stimulated BLI secretion. This effect was not dose related. At luminal pH2 all four peptides stimulated BLI secretion. Stimulation by PHI was already observed at a dose of 10(-14) M while VIP elicited a stimulatory effect at 10(-12) M. PHI at the two lowest concentrations of 10(-14) and 10(-12) M elicited a stimulation of SLI and gastrin release while the same doses of VIP and the higher doses of all four peptides had no effect on SLI and gastrin secretion at an acidic intraluminal pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

15.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

16.
Effects of endothelin-1 on gastric acid secretion, duodenal HCO3- secretion, and duodenal mucosal integrity were investigated in anesthetized rats, in comparison with those of TY-10957, a stable analogue of prostacyclin. A rat stomach mounted on an ex-vivo chamber or a proximal duodenal loop was perfused with saline, and gastric acid or duodenal HCO3- secretion was measured using a pH-stat method and by adding 100 mM NaOH or 10 mM HCl, respectively. Duodenal lesions were induced by mepirizole (200 mg/kg) given subcutaneously. Intravenous administration of endothelin-1 (0.6 and 1 nmol/kg) caused an increase of duodenal HCO3- secretion with concomitant elevation of blood pressure; this effect was antagonized by co-administrahon of BQ-123 (ET(A) antagonist; 3 mg/kg, i.v.) and significantly mitigated by vagotomy. Likewise, endothelin-1 caused a significant decrease in histamine-stimulated acid secretion, and this effect was also significantly antagonized by BQ-123. Although TY-10957 (10 and 30 mg/kg, i.v.) produced a temporal decrease of blood pressure, this agent caused not only an increase of duodenal HCO3- secretion, independent of vagal nerves, but also a decrease of acid secretion as well. In addition, both endothelin-1 and TY-10957 significantly prevented mepirizole-induced duodenal lesions at the doses that caused an increase of duodenal HCO3- secretion and a decrease of gastric acid secretion. These results suggest that endothelin-1 affects the duodenal mucosal integrity by modifying both gastric acid and duodenal HCO3- secretions, the effects being mediated by ET(A) receptors.  相似文献   

17.
The effect of an aqueous leaf extract ofAnacardium occidentale on gastric acid secretion was tested in rats. Twenty (20) Wistar albino rats were used for the gastric acid assay experiment. The rats were divided into 2 groups of 10 each. Gastric acid output was determined by continuous perfusion of rat stomach in urethane anesthetized rats. Control gastric acid output was obtained using 0.9% sodium chloride as perfusate and extract induced gastric acid output was obtained by perfusion with 0.1% solution of Anacardium occidentale Intragastric administration of the extract caused significant increase in mean gastric output (P <0.05). Atropine (5μg/100g,) lM and Cimetidine (5mg/100g), IM. significantly inhibited the extract induced gastric acid secretion via muscarinic and histaminic receptors respectively. Our findings showed that the use of the plant extract as a single anti-gastric ulcer therapy may not involve lowering of acid secretions rather it may be due to its anti Helicobacter pylori effect.  相似文献   

18.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

19.
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum. acid-base transporters; cystic fibrosis transmembrane conductance regulator channel; surface pH gradient; mucus gels; trefoil peptides  相似文献   

20.
We compared gastric acid secretion in response to various stimuli in normal and streptozotocin (STZ)-induced diabetic rats, in an attempt to characterize the alteration of acid secretory response in diabetic conditions. Animals were injected STZ (70 mg x kg(-1), i.p.) and used after 5 weeks of diabetes with blood glucose > 350 mg x dL(-1). Under urethane anesthesia, a rat stomach was mounted on an ex vivo chamber, perfused with saline and acid secretion was measured at pH 7.0 using a pH-stat method and by adding 100 mM NaOH. The acid secretion was stimulated by i.v. infusion of either histamine (4 mg x kg(-1) x h(-1)), pentagastrin (60 microg x kg(-1) x h(-1)) or carbachol (20 microg x kg(-1) x h(-1)) or i.v. injection of YM-14673 (0.3 mg x kg(-1)), an analog of thyrotropin-releasing hormone, or vagal electrical stimulation (2 ms, 3 Hz, 0.5 mA). In normal rats, gastric acid secretion was increased in response to either histamine, pentagastrin, carbachol, YM-14673 or electrical vagal stimulation. In STZ diabetic rats, however, changes in acid secretion varied depending on the stimuli; the acid secretory responses to histamine remained unchanged, those to YM-14673 and vagal electrical stimulation significantly decreased, but the responses to both pentagastrin and carbachol were significantly enhanced as compared to normal rats. Luminal release of histamine in response to both pentagastrin and carbachol was increased in STZ-diabetic rats as compared to normal animals. The altered acid secretory responses in STZ diabetic rats were partially reversed by daily injection of insulin with amelioration of high blood glucose levels. These results suggest that STZ-diabetic rats showed different changes in gastric acid secretory responses to various stimuli; no change in response to histamine, a decrease to both YM-14673 and vagal electrical stimulation and an increase to both pentagastrin and carbachol. The increased acid secretory response may be associated with an enhanced release of mucosal histamine, while the decreased response may be due to vagal neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号