首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of fatty acids on insulin secretion in vitro was investigated. Pieces of pancreas from fed rats were incubated for 15 or 90 min at low (0.6 mg/ml) and high (3.0 mg/ml) glucose concentrations with and without either sodium octanoate or sodium oleate. A highly significant difference in insulin secretion between low and high glucose concentrations indicated viability and responsiveness of the incubated tissue. No statistically significant effect of octanoate or oleate on insulin secretion was found at either low or high glucose concentration. Thus, no support was found for the concept that medium- and long-chain free fatty acids are insulin secretagogues.  相似文献   

2.
Intestinal inflammation causes metabolic disorders. The purpose of this study was to determine the effect of dietary supplementation with lactosucrose (LS) on the serum metabolome and intestinal luminal content of fatty acids in colitic rats. Colitis was induced in rats using trinitrobenzene sulfonic acid. Subsequently, rats received intragastric administration of either 250 mg LS/kg body weight or saline (the control group) every day for 5 weeks. Short-chain fatty acids in the intestinal lumen, blood profile, and metabolites in serum were measured, respectively, using gas chromatography, biochemistry analyzer, and nuclear magnetic resonance-based metabolomics combined with multivariate statistics. Metabolic effects of LS included: (1) decreases in concentrations of branched-chain amino acids (isoleucine and valine), alanine, citric acid, trimethylamine oxide and taurine, and the abundance of aspartate aminotransferase in serum; (2) increases in concentrations of glucose metabolites (including succinate) in serum; and (3) altered concentrations of butyrate in the cecal content and of butyrate and acetate in the colon content. The results indicate that LS supplementation to colitic rats affects whole-body metabolism of amino acids and release of aspartate aminotransferase and alkaline phosphatase from tissues into the blood circulation, and enhances the production of short-chain fatty acids in the intestinal lumen.  相似文献   

3.
The present study was undertaken to investigate how the activation of gastric mechanoreceptors by distension of the stomach in conscious gastric fistula rats influences gastric emptying; and the roles of capsaicin sensitive vagal afferent fibres and the 5-HT3, GRP and CCK-A receptors involved in mediating these responses. To activate mechanoreceptors by non-nutrient dependent pathways, methylcellulose in saline was used to distend the stomach (5 cm H2O) and the subsequent emptying of saline was examined immediately, and at 3, 5 and 10 min following distension. Prior distension delayed the subsequent emptying of saline instilled into the stomach compared with non-distended controls (2.28+/-0.09 ml/5 min; P < 0.001). Topical application of capsaicin, completely abolished the distension-induced inhibition of gastric emptying when compared with vehicle treated rats (2.82+/-0.09 vs. 2.38+/-0.04 ml/5 min; P < 0.001). Peripheral administration of a GRP antagonist (2258 U89UJ, 1 mg/kg), and a 5-HT3 antagonist (BRL4369UA, 50 microg/kg) significantly reversed (2.56+/-0.14 ml/5 min; P < 0.05 and 2.61+/-0.07 ml/5 min; P < 0.01; respectively) the delay in gastric emptying induced by distension. When the rats were treated with the CCK-A antagonist, gastric emptying of saline following distension was also significantly facilitated (2.56+/-0.07 ml/5 min; P < 0.001). In contrast, the CCK-B/gastrin receptor antagonist had no significant effect on the distension induced delay in gastric emptying (1.95+/-0.12 ml/5 min). The present results suggest that gastric distension in conscious gastric fistula rats delays gastric emptying by activating capsaicin-sensitive extrinsic afferent nerve fibres. Moreover, the results also indicate that distension-induced mechanisms involve GRP, 5-HT3 and CCK-A receptors, but not CCK-B receptors.  相似文献   

4.
Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner; however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.  相似文献   

5.
The response of gastric motility to the administration of water and saline in the larynx and epiglottis was investigated in urethan-chloralose anesthetized rats. Administration of water inhibited motility of the distal stomach, but 0.15 M NaCl did not induce the inhibitory response. Bilateral sectioning of the superior laryngeal nerve (SLN) abolished the inhibitory response induced by water. Bilateral cervical vagotomies abolished the inhibitory responses, although spinal transection did not affect the inhibitory response. These inhibitory responses have been observed in immobilized animals. The degree of inhibition by water and hypotonic saline was negatively correlated with the sodium concentration. In contrast, the degree of inhibition to hypertonic saline was positively correlated with the sodium concentration. The proximal stomach also showed a reduction in intragastric pressure in response to the administration of water. These findings suggest that water-responsive afferent neurons in the SLN suppress gastric motility via the vagal efferent nerve.  相似文献   

6.
Abstract: Following nerve crush, cholesterol from degenerating myelin is conserved and reutilized for new myelin synthesis during nerve regeneration. The possibility that other myelin lipids are salvaged and reutilized has not been investigated previously. We examined the fate of myelin phospholipids and their fatty acyl moieties following nerve crush by electron microscopic autoradiography of myelin lipids prelabeled with [3H]oleate or [2-3H]-glycerol. Both precursors were incorporated predominantly (>90%) into phospholipids; >85% of the [3H]oleate was incorporated as oleate, with the remainder in longer-chain fatty acids. Before nerve crush, both labels were restricted to myelin sheaths. Following nerve crush and subsequent regeneration, over half the label from [3H]oleate, but little from [2-3H]glycerol, remained in nerve. The oleate label was present as fatty acyl moieties in phospholipids and was localized to newly formed myelin sheaths. Among the extracellular soluble lipids within the degenerating nerve, the bulk of the labeled phospholipids floated at the same density as lipoprotein particles. These data indicate that myelin phospholipids are completely hydrolyzed during nerve degeneration, that at least half the resultant free fatty acids are salvaged and reutilized for new myelin synthesis, and that these salvaged fatty acids are transported by a lipoprotein-mediated mechanism similar to that functioning in cholesterol reutilization.  相似文献   

7.
The effect of sodium selenite (0.05, 0.1, and 0.2 mg/kg body weight, ip) on the contents of lipids (phospholipids, cholesterol, esterified fatty acids, gangliosides), thiobarbituric acid reactive substance (TBARS), and thiol group in circadian rhythm centers (preoptic area, brainstem, and posterior hypothalamus) of male Wistar rats was studied after 7 d of treatment. The content of phospholipids was elevated significantly with a dose of 0.1 mg/kg of selenite in the preoptic area and brainstem, but a 0.2-mg/kg dose has depleted its level significantly in these regions. The alteration of phospholipids in posterior hypothalamus was not significant with three doses of sodium selenite. The level of cholesterol in the preoptic area was inhibited significantly with a dose of 0.05 mg/kg sodium selenite, but its level was elevated significantly with a dose of 0.2 mg/kg selenite in the preoptic area and brainstem. Alteration with three doses of sodium selenite in the posterior hypothalamus was not significant. The ganglioside level in the preoptic area and brainstem was elevated significantly with a 0.1-mg dose of sodium selenite; conversely, a 0.2 mg dose of sodium selenite caused a significant depletion on its content in these areas. In the posterior hypothalamus, the ganglioside level was depleted significantly with a dose of 0.1 mg, but elevated significantly with a dose of 0.2 mg of sodium selenite. The level of esterified fatty acids was decreased significantly in the preoptic area and brainstem with a dose of 0.1 mg/kg sodium selenite, but in these regions, its level was elevated with a dose of 0.2 mg/kg sodium selenite and its elevation was significant in the preoptic area. In the posterior hypothalamus, the alteration of esterified fatty acids with three doses of sodium selenite was not significant. The effect of 0.1 and 0.2 mg/kg sodium selenite on the TBARS level and thiol group in sleep centers was significantly opposite to the wakefulness center. A sodium selenite dose of 0.1 mg/kg had depleted the content of TBARS in the preoptic area and brainstem but elevated the content of the thiol group significantly in the posterior hypothalamus. On the other hand, a 0.2-mg/kg dose of sodium selenite has significantly elevated the content of TBARS but depleted the content of the thiol group significantly in the posterior hypothalamus. No dose-dependent alteration was observed on the content of lipids, TBARS, and thiol group in the circadian rhythm centers of rats.  相似文献   

8.
The effect of copper and sodium intake upon liver cholesterol concentrations, fatty acid profile, and mineral concentrations were studied in the Long-Evans rat. Forty-eight male weaning rats were divided into three groups of 16 each and fed a semipurified diet containing either 0, 3, or 8 mg of added copper/kg of diet. At 100 d of age, half of the animals in each group were given 1% NaCl as drinking water and the other half was given deionized-distilled water for 12 wk. Copper deficiency in rats produced elevations in liver palmitate and oleate concentrations, but decreases in linoleate concentrations. The ratio of oleate:stearate was higher in copper deficient rats. Liver copper levels were decreased, but liver iron concentrations were elevated in copper deficient rats. Sodium intake did not have an effect on any of the parameters studied. These results suggested that dietary copper deficiency alters both liver mineral and fatty acid composition.  相似文献   

9.
The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.  相似文献   

10.
Effects of electrical stimulation of the nerve bundles including sensory and parasympathetic nerves innervating cerebral arteries on cerebral blood flow (CBF) and mean arterial blood pressure (MABP) were investigated with a laser-Doppler flowmeter and a blood pressure monitoring system in anesthetized rats pretreated with and without capsaicin. The electrode was hooked on the nerve bundles including the distal nasociliary nerve from trigeminal nerve and parasympathetic nerve fibers from sphenopalatine ganglion. In control rats, the nerve stimulation for 30 s increased CBF in the ipsilateral side and MABP. Hexamethonium attenuated the increase in CBF and abolished that in MABP. Under treatment with hexamethonium, N(G)-nitro-L-arginine (L-NNA, 1 mg/kg) significantly attenuated the stimulation-induced increase in CBF, which was restored by the addition of L-arginine. Although the dose of L-NNA was raised up to 10 mg/kg, the stimulation-induced increase in CBF was not further inhibited and was never abolished. In capsaicin-pretreated rats, magnitudes of the stimulation-induced increases in CBF and MABP were lower than those in control rats. Hexamethonium attenuated the increase in CBF and abolished that in MABP. Under treatment with hexamethonium, L-NNA abolished the stimulation-induced increase in CBF in capsaicin-pretreated rats. In conclusion, nitric oxide released from parasympathetic nerves and neuropeptide(s) released antidromically from sensory nerves may be responsible for the increase in CBF in the rat. The afferent impulses by nerve stimulation may stimulate the trigeminal nerve and lead to the rapid increase in MABP, which partly contributes to the increase in CBF.  相似文献   

11.
Fatty acid-dependent ethanol metabolism   总被引:1,自引:0,他引:1  
Rates of ethanol oxidation by perfused livers from fasted female rats were decreased from 82 +/- 8 to 11 +/- 7 mumol/g/hr by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. The subsequent addition of fatty acids of various chain lengths in the presence of 4-methylpyrazole increased rates of ethanol uptake markedly. Palmitate (1 mM) increased rates of ethanol oxidation to 95 +/- 8 mumol/g/hr, while octanoate and oleate increased rates to 58 +/- 11 and 68 +/- 15 mumol/g/hr, respectively. Hexanoate, a short-chain fatty acid oxidized predominantly in the mitochondria, had no effect. Addition of oleate also increased the steady-state level of catalase-H2O2. Pretreatment of rats for 1.5 hours with 3-amino-1,2,4-triazole (1.0 g/kg), an inhibitor of catalase, prevented the ethanol-dependent decrease in the steady-state level of catalase-H2O2 completely. Under these conditions, aminotriazole decreased rates of ethanol oxidation by about 50% and blocked the stimulation of ethanol oxidation by fatty acids. Oleate decreased rates of aniline hydroxylation by about 50%, indicating that cytochrome P450 is not involved in the stimulation of ethanol uptake by fatty acids. Furthermore, oleate stimulated ethanol uptake in livers from ADH-negative deermice indicating that fatty acids do not simply displace 4-methylpyrazole from alcohol dehydrogenase. It is concluded that the stimulation of ethanol oxidation by fatty acids is due to increased H2O2 supplied by the peroxisomal beta-oxidation of fatty acids for the catalase-H2O2 peroxidation pathway.  相似文献   

12.
1. The effects of intravenous injection of n-butyrate, iso-butyrate, n-valerate and iso-valerate on insulin and glucagon secretion was examined in conscious sheep. 2. Each sodium salt of the short chain fatty acids increased plasma insulin and glucagon concentrations in a dose-dependent manner (312-1250 mumol/kg body wt). 3. Both butyrate and valerate isomers with branched carbon chains had larger insulin releasing activity than isomers with straight carbon chains. 4. The glucagon responses to butyrate or valerate did not differ between the isomers with straight carbon chains and those with branched carbon chains. 5. Our results suggest that the receptive mechanism to short chain fatty acids, which may involve the nervous system, differs between the A cell and the B cell in sheep in vivo.  相似文献   

13.
Ma HJ  Wu YM  Ma HJ  Zhang LH  He RR 《生理学报》2003,55(5):505-510
应用记录肾传入神经多单位和单位放电的方法,观察肾动脉内注射辣椒素对麻醉家兔肾神经传入纤维自发放电活动的影响。结果表明:(1)肾动脉内注射辣椒素20、40和60nmol/kg可呈剂量依赖性地兴奋肾传入纤维的活动,而动脉血压不变;(2)静脉内预先应用辣椒素受体阻断剂钌红(40mmol/kg),可完全阻断辣椒素对肾传人纤维的兴奋作用。(3)静脉内预先注射一氧化氮合酶抑制剂L-NAME(0.1mmol/kg),能延长并增强肾传入神经对辣椒素的反应。以上结果提示:肾动脉内应用辣椒素可兴奋肾传人纤维的自发放电活动。一氧化氮作为抑制因素参与辣椒素诱导的肾传入神经兴奋。  相似文献   

14.
Concentrated cultures of Lactobacillus bulgaricus were prepared by resuspending cells grown in semisynthetic media in sterile 10% non-fat milk solids. The concentrated cultures were frozen in liquid nitrogen for 24 h. The cell suspensions exhibited decreased viability after storage, and the amount of death varied among the different strains tested. Storage stability of all strains examined was improved by supplementing the growth medium with sodium oleate. Radioisotopes were used to study the fate of sodium oleate with L. bulgaricus NCS1. [1-(14)C]sodium oleate was incorporated solely into the lipid portion of the cells, including both neutral and polar lipids. The fatty acid composition of L. bulgaricus NCS1, NCS2, NCS3, and NCS4 grown with and without sodium oleate was studied. The major fatty acids of strains NCS1, NCS2, and NCS3 grown without sodium oleate were dodecanoic, tetradecanoic, hexadecanoic, hexadecenoic, and octadecenoic acids. In addition to these, strain NCS4 contained C(19) cyclopropane fatty acid. The major fatty acids of all strains grown with sodium oleate were tetradecanoic, hexadecanoic, hexadecenoic, octadecenoic, and C(19) cyclopropane fatty acids. All strains grown in broth containing sodium oleate contained larger amounts of octadecenoic and C(19) cyclopropane fatty acid, and less saturated fatty acids than when grown without sodium oleate. Statistical analyses indicated that C(19) cyclopropane fatty acid was most closely related to stability of the lactobacilli in liquid nitrogen. A negative regression line that was significant at P < 0.001 was obtained when the cellular content of this fatty acid was plotted against death.  相似文献   

15.
Rat liver was perfused in situ via the portal vein without recirculation: 1) Nerve stimulation (20 Hz, 2 ms, 20 V) increased glucose output and shifted lactate uptake to output; the alterations were diminished by oleate but not octanoate. 2) Glucagon (1nM) stimulated glucose output maximally also in the presence of the fatty acids, so that nerve stimulation could not increase it further. The hormone also enhanced lactate uptake and nerve stimulation counteracted this effect. The counteraction was diminished by oleate but not octanoate. 3) Insulin (100nM) slightly lowered glucose output and had no effect on lactate balance. It antagonized the increase of glucose output by nerve stimulation, but left the shift of lactate uptake to release unaffected. These events were not influenced by the fatty acids. 4) Nerve stimulation decreased ketone body production from oleate and octanoate. 5) Glucagon increased ketogenesis from oleate, but not octanoate. In the presence of glucagon nerve stimulation also lowered ketogenesis. This decrease was diminished in the presence of oleate. 6) Insulin lowered ketogenesis from oleate but not octanoate. In the presence of insulin nerve stimulation decreased ketogenesis; the relative change was independent of the fatty acids. The complex interactions between fatty acids, glucagon and insulin in the modulation of sympathetic nerve actions can be summarized as follows: Oleate, which enters the mitochondria via the carnitine system, but not octanoate, which enters independently from this system, as well as insulin but not glucagon effectively modulated the nerve actions on carbohydrate metabolism. Glucagon but not insulin modulated the nerve effects on ketogenesis from oleate but not octanoate. The regulatory interactions between substrates, hormones and nerves can best be explained on the basis of the model of metabolic zonation.  相似文献   

16.
The effects of haloperidol and Des-Tyr1-γ-endorphin (DTγE) were studied on climbing induced in mice by high doses of apomorphine and on the yawning syndrome induced in rats by low doses of apomorphine. Haloperidol in a dose of 0.0046 mg/kg s.c. potentiated climbing whereas at higher doses climbing was inhibited (ED50=0.03 mg/kg). DTγE had no effect on climbing under normal conditions in doses up to 2 mg/kg s.c.. After three days of handling and saline pre-injections DTγE potentiated climbing in doses from 0.1 to 1 mg/kg.Haloperidol inhibited yawning induced by low doses of apomorphine (ED50=0.01 mg/kg). DTγE, on the other hand, potentiated yawning induced by low apomorphine at doses of 0.02 and 0.04 mg/kg s.c.. From the point of view that low doses of apomorphine predominantly activate presynaptic dopamine autoreceptors while higher doses predominantly activate postsynaptic dopamine receptors the following tentative conclusions are drawn. 1) Haloperidol blocks presynaptic dopamine autoreceptors at low doses and postsynaptic dopamine receptors at higher doses. 2) DTγE sensitizes presynaptic dopamine autoreceptors at low doses, thereby strengthening the local feedback mechanism at the dopaminergic nerve ending, and sensitizes postsynaptic dopamine receptors at higher doses.  相似文献   

17.
Pregnancy is associated with blunted reflex responses to cardiac and arterial baroreceptor stimulation. We tested the hypothesis that arterial baroreceptor afferent discharge is attenuated in response to a pressure stimulus in pregnant rats. Multifiber aortic depressor nerve activity (ADNA), mean arterial pressure (MAP), and heart rate were measured in anesthetized (pentobarbital sodium, 35 mg/kg ip) late-pregnant and virgin rats in response to increases ?phenylephrine (PE), 1.5-24 microg. kg(-1). min(-1) and 1-16 microg/kg and decreases ?sodium nitroprusside (SNP), 5-80 microg. kg(-1). min(-1) and 0.05-16 microg/kg in MAP. Resting MAP was lower in pregnant rats, but changes in MAP were similar to those in virgin rats during both PE and SNP administration. ADNA was significantly attenuated in pregnant animals during both PE and SNP infusions (P < 0.05) due to a more rapid adaptation to the pressure stimulus. Bolus drug administration evoked similar changes in MAP and ADNA in both groups; however, the maximum decrease in ADNA was achieved at the lowest dose of SNP in pregnant rats. Thus baroreceptor afferent discharge is attenuated in pregnant rats, and this involves a more rapid adaptation to a pressure stimulus.  相似文献   

18.
Rates of ketone-body formation in the perfused rat liver   总被引:15,自引:13,他引:2       下载免费PDF全文
1. The rates of formation of acetoacetate and β-hydroxybutyrate by the isolated perfused rat liver were measured under various conditions. 2. The rates found after addition of butyrate, octanoate, oleate and linoleate were about 100μmoles/hr./g. wet wt. in the liver of starved rats. These rates are much higher than those found with rat liver slices. 3. The differences between the rates given by slices and by the perfused organ were much higher with the long-chain than with short-chain fatty acids. The increments caused by oleate and linoleate were 12 and 16 times as large in the perfused organ as in the slices, whereas the increments caused by butyrate and octanoate were about four times as large. 4. The rates of ketogenesis in the unsupplemented perfused liver of well-fed rats, and the increments caused by the addition of fatty acids, were about half of those in the liver from starved rats. 5. The value of the [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was raised by octanoate, oleate and linoleate. 6. Carnitine did not significantly accelerate ketogenesis from fatty acids. 7. Oleate formed up to 82% of the expected yield of ketone bodies. 8. In the liver of alloxan-diabetic rats the endogenous rates of ketogenesis were raised, in some cases as high as in the liver from starved rats, after addition of oleate. 9. On addition of either β-hydroxybutyrate or acetoacetate to the perfusion medium the liver gradually adjusted the [β-hydroxybutyrate]/[acetoacetate] ratio towards the normal range. 10. The [β-hydroxybutyrate]/[acetoacetate] ratio of the medium was about 0·4 when slices were incubated, but near the physiological value of 2 when the liver was perfused. 11. The experiments demonstrate that for the study of ketogenesis slices are in many ways grossly inferior to the perfused liver.  相似文献   

19.
Male rats were given streptozotocin (100 mg/kg) by intraperitoneal injection. Groups of control and streptozotocin-treated animals were sacrificed at daily intervals for 4 days after injection. Over this period, treated rats lost weight continuously while control animals progressively gained weight. Within 24 h of treatment blood glucose and plasma free fatty acids were raised to levels which were sustained for the remainder of the experiment. After 48 h blood ketone bodies, plasma cholesterol and triglycerides were maximally raised and liver glycogen and blood lactate similarly lowered. The percentage composition of major fatty acids in liver lipids was unchanged until 4 days after treatment when there were significant increases in the proportion of oleate and linoleate and reductions in stearate and arachidonate. The data confirm that streptozotocin induces a rapid and sustained diabetes. It is suggested that metabolic experiments, in streptozotocin-diabetic rats, may be performed 48 h after treatment.  相似文献   

20.
This study was conducted to examine the influence of supplementation of sodium butyrate, sodium monensin or calcium propionate in a starter diet on the performance and selected plasma metabolites (plasma glucose, non-esterified fatty acids and β-hydroxybutyrate) of Holstein calves during pre- and post-weaning periods. Twenty-four newborn Holstein calves were housed in individual hutches until 10 weeks of life, receiving water free choice, and fed four liters of milk daily. Calves were blocked according to weight and date of birth, and allocated to one of the following treatments, according to the additive in the starter: (i) sodium butyrate (150 g/kg); (ii) sodium monensin (30 mg/kg); and (iii) calcium propionate (150 g/kg). During 10 weeks, calves received starter ad libitum, while coast cross hay (Cynodon dactylon (L.) pers.) was offered after weaning, which occurred at the 8th week of age. Weekly, calves were weighted and evaluated for body measurements. Blood samples were taken weekly after the fourth week of age, 2 hours after the morning feeding, for determination of plasma metabolites. No differences were observed among treatments for starter or hay intake, BW and daily gain of the animals. Mean concentrations of selected plasma metabolites were similar in calves fed a starter supplemented with sodium butyrate, sodium monensin and calcium propionate. There was significant reduction in the concentrations of plasma glucose as calves aged. The inclusion of sodium butyrate, calcium propionate or sodium monensin as additives in starter feeds resulted in equal animal performance, before and after weaning, suggesting that sodium monensin may be replaced by organic acid salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号