首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the Fiji Islands, female yellow‐lipped sea kraits (Laticauda colubrina) grow much larger than males, and have longer and wider heads than do conspecific males of the same body length. This morphological divergence is accompanied by (and may be adaptive to) a marked sex divergence in dietary habits. Adult female sea kraits feed primarily on large conger eels, and take only a single prey item per foraging bout. In contrast, adult males feed upon smaller moray eels, and frequently take multiple prey items. Prey size increases with snake body size in both males and females, but the sexes follow different trajectories in this respect. Female sea kraits consume larger eels relative to predator head size and body length than do males. Thus, the larger relative head size of female sea kraits is interpreted as an adaptation to consuming larger prey items. Our results are similar to those of previous studies on American water snakes (natricines) and Australian file snakes (acrochordids), indicating that similar patterns of sex divergence in dietary habits and feeding structures have evolved convergently in at least three separate lineages of aquatic snakes.  相似文献   

2.
Gastric evacuation and daily ration were studied in juvenile scalloped hammerhead sharks in Kāne'ohe Bay in order to better understand their ecology and role as apex predators in the marine environment. Three major variables known to affect the rate of gastric evacuation were manipulated: meal size, prey species, and temperature. Rates of gastric evacuation were faster than have previously been measured for sharks. The time for 80% of the meal weight (dry) to be evacuated ranged from 5.4 to 22.1 h. Daily ration was estimated using two different methods based on gastric evacuation rates and stomach content data. Estimates ranged from 2.12% to 3.54% of the body weight, which is relatively high compared to other elasmobranchs, but lower than estimates of maintenance ration for juvenile scalloped hammerheads. Data available for diet and growth of juvenile scalloped hammerhead sharks in Kāne'ohe Bay as well as data for their prey species suggest that these sharks may be surviving much of the time at consumption levels below maintenance ration.  相似文献   

3.
Individual offspring within a brood may receive different amounts of provisioning from the male and female parents. Some hypotheses suggest that this bias is the result of an active and adaptive choice by parents. An alternative hypothesis is that feeding biases arise as a result of a constraint of fitting large prey items into small gapes. In an experiment with pied flycatchers, Ficedula hypoleuca , we tested for sex-biased allocation to junior nestlings in asynchronous broods and whether this could be explained by active parental choice or by passive allocation according to prey size and gape size. In both control broods and broods with experimentally increased degree of asynchrony, prey types did not differ between parents but females brought smaller prey than males at younger but not older nestling stages. At younger but not older nestling stages, the majority of feeds to junior nestlings were from females, and the smaller nestlings consumed smaller prey than older siblings. However, there was no evidence of active preference of small nestlings by females as parents did not differ in the tendency to bypass a begging senior nestling in order to feed a junior nestling. Provisioning rates by females were lower than those by males when nestlings were young and we suggest that foraging time constraints caused by the need to brood offspring result in females bringing smaller prey than males. In turn, the larger prey brought by males was more often transferred to larger offspring after the smaller ones failed to swallow it. In such cases, 'preferential' feeding of small nestlings by females may simply be a passive side effect of foraging constraints and gape-size limitations.  相似文献   

4.
Synopsis The patterns of mate size and parental care of a monogamous cichlid fish,Cichlasoma maculicauda, were studied in Gatun Lake, Panama. Males defend territories which serve as courtship and nest sites. Within a population most mates in pairs are of equal size rank. In each pair the male is larger than the female, probably because most mature males are larger than most mature females. Clutch size increases with female body size. Male size affects breeding success in two ways. First, larger males provide nest sites less susceptible to destructive wave action. Second, young of larger males grow faster than young of smaller males. Large males defeat small males in contests for position in feeding areas, and this may provide their young with better feeding conditions. In the laboratory young growth rates increase with food abundance, and at high levels of food surpass those observed in nature. Fast growth of young reduces their vulnerability to predators and should allow parents to breed more often. Young survival rates improve with the size of the parents, so that larger fish raise more offspring at each breeding attempt. These observations suggest why preference for large mates should occur.  相似文献   

5.
Seasonal occurrence patterns of adults of both sexes, intensity of male-male interactions, and mating success in the spider,Nephila clavata, were examined in the field. Adult males began to attend female webs about 2 weeks before female maturation. Large adult males were abundant in the early breeding season, but small males increased later in the season. From the distribution of males among female webs and size relationship of males within a web, male-male interactions seemed to be more intense when most females were still subadult. This was verified by a field experiment in which males were artificially introduced to female webs that were attended by other males. It was found that the probability of introduced males remaining on subadult female webs was lower than that on adult webs. As mating occurred mostly in the period shortly after the female final molt and first male sperm precedence was known in all spiders reported so far, intense male-male competition on subadult female webs seemed to be reasonable. Male longevity had an important influence on the mating success of males with just-molted females. Mating success was also affected by the relative body size of males present in a given period. Since larger males occupied the position closest to females within a web and stayed there longer, relative body size appeared to influence mating success through male-male competition. Female body size at maturation declined with time; hence, males that attained sexual maturity earlier had the advantage of mating with larger and more fecund females. Therefore, early maturation as well as larger size seem to be two important trairs influencing the reproductive success of males.  相似文献   

6.
Aspects of the biology of the Natal mountain catfish, Amphilius natalensis, including gametogenesis, spawning season, size-at-maturity, sex ratio, diet and feeding morphology were determined from fish collected in the Songimvelo Game Reserve, South Africa, between 1989 and 1990. Female sexual maturity was established at 63 mm total length. A. natalensis is an asynchronous, iteroparous spawner, breeding throughout summer from August to February. Sex ratio of females to males was 2.2:1, with females attaining a significantly larger size than males. Gametogenesis followed a pattern similar to that of other freshwater teleosts peaking over the spawning period. Stomach content analysis and observations on feeding morphology revealed that A. natalensis was an opportunistic predator with large fish consuming larger prey from a greater variety of taxonomic groups. The most abundant prey items eaten were dipteran (particularly Chironomidae) and ephemeropteran (particularly Baetidae) larvae.  相似文献   

7.
In invertebrates, the size at maturation is considered to be important for adult fitness. In the wolf spider Hygrolycosa rubrofasciata, however, it is only females that clearly benefit of larger size through augmented egg production, while male mating success is determined by display activity not related to size. Thus, we can expect conflicting growth patterns for the sexes. Additionally, populations differ greatly in adult size: individuals from dry habitats are smaller than those from wet habitats. To study the sexual differences in reaction norms of growth, we reared spiderlings from seven populations at two food levels under controlled laboratory conditions and compared size at sexual maturity. The shapes of reaction norms for adult size differed between the sexes. In females, the reaction norms were parallel, but individuals from dry habitats tended to grow larger at the given food levels. In males, there was a significant interaction between food level and population without any consistent differences between populations. Maturation time was a plastic character in both sexes with no genetic differences among populations. However, females on low food level matured later and significantly smaller in size than those on high food level. Males also matured later on low food level, but they were nearly of the same size as males that received more food. Female growth patterns reflected the strong selection for large size at maturity. However, the patterns for males were highly variable, which could be explained by the weak overall selection on male size, which means that any environmental factors can affect male growing patterns. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Synopsis Catch records from the Hawai'i Cooperative Shark Research and Control Program, which operated in Hawai'i from 1967–1969, were examined and data on the Galapagos shark,Carcharhinus galapagensis were analyzed. A total of 304 Galapagos sharks was caught, predominantly with longlines. More female sharks were caught than males, and the catch was skewed geographically. On the island of O'ahu the highest catch rates occurred along the north and south coasts. High catch rates also occurred near points of land, where longshore currents converge. Average depth of capture was greater for juveniles (45.1 m) and mature males (60.2 m), than for subadults (38.8 m) and mature female sharks (34.2 m). Males appear to reach maturity between 205 and 239 cm total length, and females between 215 and 245 cm. Litter size ranged from 4 to 16 pups, with an average of 8.7. In Hawaiian waters Galapagos sharks are born at just over 80 cm total length. Mating and parturition apparently occur early in the year, and gestation is estimated to be about 12 months. Stomach contents consisted mainly of teleosts and benthic prey, and ontogenetic changes in diet occurred as sharks increased in size. Sharks consumed a smaller proportion of teleosts and more elasmobranchs with increasing size. Dietary diversity also increased with increasing size of shark.  相似文献   

9.
Sexual size dimorphism and sexual selection in turtles (order testudines)   总被引:5,自引:0,他引:5  
Summary This paper combines published and original data on sexual size dimorphism, reproductive behavior, and habitat types in turtles. Our major finding is that observed patterns of sexual size dimorphism correlate with habitat type and male mating strategy. (1) In most terrestrial species, males engage in combat with each other. Males typically grow larger than females. (2) In semiaquatic and bottom-walking aquatic species, male combat is less common, but males often forcibly inseminate females. As in terrestrial species, males are usually larger than females. (3) In truly aquatic species, male combat and forcible insemination are rare. Instead, males utilize elaborate precoital displays, and female choice is highly important. Males are usually smaller than females.We interpret these correlations between sexual behavior and size dimorphism in terms of sexual selection theory: males are larger than females when large male size evolves as an adaptation to increase success in male combat, or to enable forcible insemination of females. In contrast, males are usually smaller than females where small size in males evolves to increase mobility (and hence, ability to locate females), or because selection for increased fecundity may result in increased female size. In turtle species with male combat or forcible insemination, the degree of male size superiority increases with mean species body size.  相似文献   

10.
Abstract An animal's sex and body size can influence not only its rate of food consumption, but also the way in which it allocates the resultant energy among the competing demands of maintenance, growth, reproduction and storage. A 13‐year mark–recapture study of pythons (Liasis fuscus) in tropical Australia provides extensive data on these topics. Rates of food intake and growth were highest in small pythons, and decreased more rapidly with body size in males than in females. Allocation to storage (as measured by the snake's mass relative to its body length) showed a more complex pattern. Body condition was high at hatching, but dropped rapidly as energy was allocated to growth rather than storage. Condition then increased through juvenile life, was at a maximum close to maturation, and was higher in females than in conspecific males. Body condition thereafter decreased with increasing body length. These allocation ‘decisions’ reflect the relative advantages of growth versus energy storage at different body sizes. Hatchling snakes grow rapidly (and hence become thin) because greater body size enables the snake to ingest larger prey items. Adult females amass larger energy reserves than males, because they need reserves to produce the clutch. Large snakes become thinner because their feeding rates are low, and they cannot compensate with increased prey size because large‐bodied mammalian prey are rare in our study area.  相似文献   

11.
In many socially monogamous bird species, parents of altricial young respond to the increasing demands of growing nestlings by increasing their feeding rate and the size of prey items delivered and by altering the types of prey provided. In some cooperatively breeding species, similar changes in feeding rate and prey size have been documented. However, potential changes in the types of prey delivered, both as nestlings age and by different group members, remain largely unexplored. Moreover, studies rarely compare the diet fed to nestlings with that eaten by the provisioning adults themselves. Here, I show that green woodhoopoe ( Phoeniculus purpureus ) nestlings receive a smaller proportion of spiders and larger proportions of caterpillars and centipedes as they grow older. Both male and female adults delivered a higher proportion of spiders to young nestlings than they ate while self-feeding, probably in response to particular nutritional requirements of the chicks. However, only males altered the proportions of caterpillars and centipedes delivered, providing smaller proportions to young nestlings than eaten themselves. These prey items may be too large for young nestlings to handle, and males may make a greater adjustment in provisioning diet than females because they collect more caterpillars and centipedes than do females. Although there were sex differences in provisioning diet, there were no differences between same-sex breeders and helpers in terms of the overall proportions of prey delivered or the changes with nestling age. Hence, individuals of different reproductive status may be following the same provisioning rules, at least in terms of prey type.  相似文献   

12.
R. Shine    W. R. Branch    P. S. Harlow    J. K. Webb 《Journal of Zoology》1996,240(2):327-340
The ecology and general biology of African snakes remains virtually unstudied, even in highly distinctive species such as the filesnakes (genera Mehelya and Gonionotophis ). Our measurements and dissections of preserved specimens provided information on body sizes, sexual dimorphism in size and bodily proportions, clutch sizes, and food habits of two Mehelya species. In both M. capensis and M. nyassae , females attain sexual maturity at the same size as conspecific males, but grow to much larger sizes. Mehelya capensis displays extreme differences in body shape between males and females at the same body length: females have longer and wider heads, thicker bodies, and larger eyes (relative to both head length and head width) than do conspecific males. Dimorphism in body proportions is less marked in M. nyassae. Female reproductive cycles are seasonal in M. capensis , and clutch sizes are larger in this species than in its smaller congener (5-11 eggs in M. capensis , 2-6 eggs in M. nyassae ).
Contrary to popular wisdom, Mehelya are not specialized ophiophages. Mehelya nyassae feeds primarily upon lygosomatine skinks, including many fossorial taxa. Mehelya capensis has a broader diet, feeding on a wide variety of terrestrial lizards (especially agamids and gerrhosaurids) and snakes. Toads are also common prey items. The diversity of prey types taken by M. capensis suggests that these snakes may use ambush predation as well as active foraging. Mehelya is strongly convergent with Asian elapids of the genus Bungarus in its morphology (triangular body shape; powerful jaws; visible interstitial skin), behaviour (nocturnality; reluctance to bite when harassed), and diet (feeding on elongate reptiles, including snakes). Observations of preyhandling and ingestion by captive snakes are needed to clarify possible selective forces for the evolution of the unusual traits shared by these taxa.  相似文献   

13.
Potential interactions between marine predators and humans arise in the southern coast of Chile where predator feeding and reproduction sites overlap with fisheries and aquaculture. Here, we assess the potential effects of intensive salmon aquaculture on food habits, growth, and reproduction of a common predator, the spiny dogfish—identified as Squalus acanthias via genetic barcoding. A total of 102 (89 females and 13 males) individuals were collected during winter and summer of 2013–2014 from the Chiloé Sea where salmon aquaculture activities are concentrated. The low frequency of males in our study suggests spatial segregation of sex, while immature and mature females spatially overlapped in both seasons. Female spiny dogfish showed a functional specialist behavior as indicated by the small number of prey items and the relative high importance of the austral hake and salmon pellets in the diet. Immature sharks fed more on pellets and anchovies than the larger hake‐preferring mature females. Our results also indicate that spiny dogfish switch prey (anchovy to hake) to take advantage of seasonal changes in prey availability. Despite differences in the trophic patterns of S. acanthias due to the spatial association with intensive salmon farming, in this region, there appears to be no difference in fecundity or size at maturity compared to other populations. Although no demographic effects were detected, we suggest that a range of additional factors should be considered before concluding that intensive aquaculture does not have any impact on these marine predators.  相似文献   

14.
Errors in decision‐making in animals can be partially explained by adaptive evolution, and error management theory explains that cognitive biases result from the asymmetric costs of false‐positive and false‐negative errors. Error rates that result from the cognitive bias may differ between sexes. In addition, females are expected to have higher feeding rates than males because of the high energy requirements of gamete production. Thus, females may suffer relatively larger costs from false‐negative errors (i.e. non‐feeding) than males, and female decisions would be biased to reduce these costs if the costs of false‐positive errors are not as high. Females would consequently overestimate their capacity in relation to the probability of predation success. We tested this hypothesis using the Japanese pygmy squid Idiosepius paradoxus. Our results show that size differences between the squid and prey shrimp affected predatory attacks, and that predatory attacks succeeded more often when the predator was relatively larger than the prey. Nevertheless, compared to male predatory attacks, female squid frequently attacked even if their size was relatively small compared to the prey, suggesting that the females overestimated their probability of success. However, if the females failed in the first attack, they subsequently adjusted their attack threshold: squid did not attack again if the prey size was relatively larger. These results suggest a sex‐specific cognitive bias, that is females skewed judgment in decision‐making for the first predation attack, but they also show that squid can modify their threshold to determine whether they should attack in subsequent encounters.  相似文献   

15.
At least two adaptive processes can lead to the evolution of sexual dimorphism: sexual selection (e.g. male-male combat) or natural selection (e.g. dietary divergence). We investigated the adaptive significance of a distinctive pattern of sexual dimorphism in a south-eastern Australian frog, Adelotus brevis. Male Adelotus grow larger than female conspecifics, have larger heads relative to body size, and have large paired projections (‘tusks’) in the lower jaw. All of these traits are rare among anurans. We quantified the degree of dimorphism in Adelotus, and gathered data on diets and mating systems of this species to evaluate the possible roles of sexual selection and dietary divergence in favoring die evolution of these sexually dimorphic traits. Analysis of prey items in alimentary tracts revealed significant sex differences in prey types. For example, females ate proportionally more arthropods and fewer molluscs than did males. However, this difference is likely to be a secondary consequence of habitat differences between the sexes (due in turn to their different reproductive roles) rather than a selective force for the evolution of sexual dimorphism. Calling males spend their time in moist habitats where pondsnails are abundant, whereas females are more often encountered in the drier arthropod-rich woodlands. A three-year behavioural ecology study on a field population revealed that reproductive males engage in agonistic interactions, with the sexually dimorphic tusks used to attack rivals. Larger body size contributed to male reproductive success. Small males were excluded from calling sites and, among the calling males, larger animals had higher reproductive success (numbers of matings) than did smaller individuals. Hence, the atypical pattern of sexual dimorphism in Adelotus brevis seems to have resulted from sexual selection for larger body size and tusk size in males, in the context of male-male agonistic behaviour, rather than natural selection for ecological divergence between the sexes.  相似文献   

16.
Reversed sexual size dimorphism (RSD, females larger than males) is commonly found in birds of prey. We used kestrels (Falco tinnunculus), breeding in western Finland in a temporally varying environment of 3-year vole cycles, to assess current hypotheses for the evolution and maintenance of RSD. Our 12-year data showed only weak correlations between parental size and breeding parameters (laying date, clutch size and the number of fledglings produced). The degree of RSD per se was unrelated to breeding success, contrary to the prediction of the female dominance hypothesis. Females with small males produced larger clutches in low-vole years, independently of laying date, which supports the small male (or its equivalent inter-sexual selection) hypothesis. Small females tended to have more fledglings, particularly in low-vole years, which is inconsistent with the hypotheses for an advantage of large female size (the starvation, intra-sexual selection, reproductive effort, and supplementary feeding hypotheses). As for males, smaller females may be more efficient hunters, the importance of which should be most pronounced under harsh breeding conditions. Our results suggest that the directional selection on a particular size in kestrels may be under contrasting selection pressures by the environment, and, at least in breeding females, the advantages of large size can actually be counterbalanced during harsh environmental conditions. Received: 7 May 1999 / Accepted: 20 January 2000  相似文献   

17.
The aim of this study was to determine whether juvenile scalloped hammerhead sharks (Sphyrna lewini) use the south-eastern Gulf of California as a nursery and feeding area. This information could help lay the groundwork required for the conservation of this endangered species. To address this, we carried out stable isotope (δ15N and δ13C) and stomach content analyses of sharks caught between 2000 and 2004 in Mazatlan, Mexico. Stomach contents and δ13C values indicated that S. lewini is a predator that feeds on benthic prey near the coast. Differences in δ15N average values between sizes classes (<100 vs. >100 cm) suggest that there was an ontogenetic change in this shark’s feeding habits and also in their living environment (from benthic areas to pelagic areas). The trophic position indicated that S. lewini is a tertiary consumer, but with a high degree of trophic plasticity, and thus, different trophic roles, highlighting the importance of this predator as a regulator of prey populations. Finally, the linear isotopic relationship between S. lewini and its prey indicates a long residency within the Mazatlan area. Our results demonstrate that the south-eastern Gulf of California is a nursery area that offers abundant food for juvenile scalloped hammerhead sharks.  相似文献   

18.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

19.
The scalloped hammerhead, Sphyrna lewini, forms schools as highly polarized as those of the obligate schoolers, Atherinops affinis, Engraulis mordax, Scomber japonicus, and Trachurus symmetricus. On the other hand, schooling hammerheads do not maintain preferential elevations and bearings to their nearest-neighbors and remain at larger inter-individual distances than the facultative schoolers, Gadus morhua and Pollachius virens, and the obligate schooler, Clupea harengus. Members of hammerhead schools vary in size more than those of small bony fishes. Furthermore, aggression is very common in schools of hammerheads; most individuals are females which compete for a position at the center of the school. Larger females perform two approach-type behaviors, Hit and Cork-screw, within the schools and force smaller sharks to the edge as they perform two withdrawal-type behaviors, Acceleration and Head-shake. Males are rare and enter the schools, performing Torso-thrust. The differences between schools of hammerheads and those of small teleosts are consistent with schooling in hammerheads functioning not to confer protection from predation, but to permit conspecifics to interact socially during the resting phase of their diel cycle.  相似文献   

20.
Grey reef sharks (Carcharhinus amblyrhynchos) are apex predators found on many Indo-Pacific coral reefs, but little is known about their movement patterns and habitat requirements. We used acoustic telemetry to determine movements and habitat use of these sharks at the isolated Rowley Shoals atolls, 250 km off the coast of north-western Australia. We equipped 12 male and 14 female sharks ranging from 0.79 to 1.69 m in total length with transmitters that were detected by an array of 11 strategically placed receivers on two atoll reefs. Over 26,000 detections were recorded over the 325 days of receiver deployment. No sharks were observed to move between reefs. Receivers on the outer slopes of reefs provided nearly all (99%) of the detections. We found no differences in general attendance parameters due to size, sex or reef, except for maximum period of detection where larger sharks were detected over a longer period than smaller sharks. Male and female sharks were often detected at separate receivers at the outer slope habitat of one reef, suggesting sexual segregation, but this pattern did not occur at the second reef where males and females were detected at similar frequencies. We identified two patterns of daily behaviour: (1) sharks were present at the reef both day and night or (2) sharks spent more time in attendance during day than at night. Fast Fourier transforms identified 24-h cycles of attendance at the reef and a secondary peak of attendance at 12 h for most sharks, although no individuals shared the same attendance patterns. Our study provides baseline data that can be used to optimise the minimum area and habitat requirements for conservation of these apex predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号