首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs’ preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide. The pyrophosphate group stays in the bilayer head group region. The isoprenoid moiety shows high flexibility inside the bilayer hydrophobic core, suggesting its potential role as a tentacle to search for OST. The oligosaccharide conformation and dynamics are similar to those in solution, but there are preferred interactions between the oligosaccharide and the bilayer interface, which leads to LLO sugar orientations parallel to the bilayer surface. Molecular docking of the bacterial LLO to a bacterial OST suggests that such orientations can enhance binding of LLOs to OST.  相似文献   

2.
Lipid-linked oligosaccharides (LLOs) such as Glc3Man9GlcNAc2-P-P-dolichol are the precursors of asparagine (N)-linked glycans, which are essential information carriers in many biological systems, and defects in LLO synthesis cause Type I Congenital Disorders of Glycosylation. Due to the low abundance of LLOs and the limitations of the chemical and physical methods previously used to detect them, almost all studies of LLO synthesis have relied upon metabolic labeling of the oligosaccharides with radioactive sugar precursors such as [3H]mannose or [14C]glucosamine. In this article, a procedure is presented for a facile, accurate, and sensitive non-radioactive method for LLO analysis based on fluorophore-assisted carbohydrate electrophoresis (FACE). First, LLOs are extracted and partially purified. Next, oligosaccharides released from LLOs are labeled with negatively charged fluorophores: 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) or 7-amino-1,3-naphthalenedisulfonic acid (ANDS). A specialized form of polyacrylamide gel electrophoresis is then used to resolve and measure ANTS or ANDS labeled oligosaccharides. Finally, the resolved oligosaccharides are detected and quantified by fluorescence imagers using CCD cameras.  相似文献   

3.
Protein N-glycosylation is initiated by the dolichol cycle in which the oligosaccharide precursor Glc3Man9GlcNAc2-PP-dolichol is assembled in the endoplasmic reticulum (ER). One critical step in the dolichol cycle concerns the availability of Dol-P at the cytosolic face of the ER membrane. In RFT1 cells, the lipid-linked oligosaccharide (LLO) intermediate Man5GlcNAc2-PP-Dol accumulates at the cytosolic face of the ER membrane. Since Dol-P is a rate-limiting intermediate during protein N-glycosylation, continuous accumulation of Man5GlcNAc2-PP-Dol would block the dolichol cycle. Hence, we investigated the molecular mechanisms by which accumulating Man5GlcNAc2-PP-Dol could be catabolized in RFT1 cells. On the basis of metabolic labeling experiments and in comparison to human control cells, we identified phosphorylated oligosaccharides (POS), not found in human control cells and present evidence that they originate from the accumulating LLO intermediates. In addition, POS were also detected in other CDG patients’ cells accumulating specific LLO intermediates at different cellular locations. Moreover, the enzymatic activity that hydrolyses oligosaccharide-PP-Dol into POS was identified in human microsomal membranes and required Mn2+ for optimal activity. In CDG patients’ cells, we thus identified and characterized POS that could result from the catabolism of accumulating LLO intermediates.  相似文献   

4.
C. A. Jakob  P. Burda 《Protoplasma》1999,207(1-2):1-7
Summary The initial steps in N-glycosylation involve the synthesis of dolichol-linked Glc3Man9GlcNAc2 oligosaccharides and the transfer of these oligosaccharides to nascent polypeptides. These processes take place at the membrane of the endoplasmic reticulum (ER) and are conserved among eukaryotes. Once transferred to the protein the N-linked oligosaccharides are immediately trimmed by glycosidases located in the ER. This review focuses on the N-linked glycosylation pathway in the ER ofSaccharomyces cerevisiae andSchizosaccharomyces pombe. In particular, we outline how yeast cells ensure that only completely assembled lipid-linked oligosaccharides are transferred to nascent polypeptides. We will discuss the oligosaccharide trimming of glycoproteins with respect to glycoprotein quality control and degradation, focusing on the two different quality control mechanisms ofS. cerevisiae andS. pombe.Abbreviations CPY carboxypeptidase Y - ER endoplasmic reticulum - LLO lipid-linked oligosaccharide - NLO protein-linked oligosaccharide - OTase oligosaccharyltransferase  相似文献   

5.
Endoplasmic reticulum (ER) homeostasis requires transfer and subsequent processing of the glycan Glc3Man9GlcNAc2 (G3M9Gn2) from the lipid-linked oligosaccharide (LLO) glucose3mannose9N-acetylglucosamine2-P-P-dolichol (G3M9Gn2-P-P-Dol) to asparaginyl residues of nascent glycoprotein precursor polypeptides. However, it is unclear how the ER is protected against dysfunction from abnormal accumulation of LLO intermediates and aberrant N-glycosylation, as occurs in certain metabolic diseases. In metazoans phosphorylation of eukaryotic initiation factor 2α (eIF2α) on Ser51 by PERK (PKR-like ER kinase), which is activated by ER stress, attenuates translation initiation. We use brief glucose deprivation to simulate LLO biosynthesis disorders, and show that attenuation of polypeptide synthesis by PERK promotes extension of LLO intermediates to G3M9Gn2-P-P-Dol under these substrate-limiting conditions, as well as counteract abnormal N-glycosylation. This simple mechanism requires eIF2α Ser51 phosphorylation by PERK, and is mimicked by agents that stimulate cytoplasmic stress-responsive Ser51 kinase activity. Thus, by sensing ER stress from defective glycosylation, PERK can restore ER homeostasis by balancing polypeptide synthesis with flux through the LLO pathway.  相似文献   

6.
Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses.  相似文献   

7.
N-linked protein glycosylation is an essential process in eukaryotic cells. In the central reaction, the oligosaccharyltransferase (OTase) catalyzes the transfer of the oligosaccharide Glc3Man9GlcNAc2 from dolicholpyrophosphate onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum. The product of the essential gene STT3 is required for OTase activity in vivo, but is not present in highly purified OTase preparations. Using affinity purification of a tagged Stt3 protein, we now demonstrate that other components of the OTase complex, namely Ost1p, Wbp1p and Swp1p, specifically co-purify with the Stt3 protein. In addition, different conditional stt3 alleles can be suppressed by overexpression of either OST3 and OST4, which encode small components of the OTase complex. These genetic and biochemical data show that the highly conserved Stt3p is a component of the oligosaccharyltransferase complex. Received: 3 June 1997 / Accepted: 29 July 1997  相似文献   

8.
Mannosylphospho dolichol synthase (DPMS) is a critical enzyme in the biosynthesis of lipid-linked oligosaccharide (LLO; Glc3Man9GlcNAc2-PP-Dol), a pre-requisite for asparagine-linked (N-linked) protein glycosylation. We have shown earlier that DPMS is important for angiogenesis, i.e., endothelial cell proliferation. This is true when cAMP is used for intracellular signaling. During cAMP signaling, DPMS is activated and ER stress is reduced. To understand the activation of DPMS at the molecular level we have isolated a cDNA clone for the DPMS gene (bDPMS) from the capillary endothelial cells of bovine adrenal medulla. DNA sequencing and the deduced amino acid sequence have established that bDPMS has a motif to be phosphorylated by cAMP-dependent protein kinase (PKA). Based on the sequence information Serine 165 has been found to be the phosphorylation target in bDPMS. Hydropathy Index when plotted against amino acid number indicates the presence of a hydrophobic region around the amino acid residues 120–160, supporting that bDPMS has one membrane spanning region. The recombinant bDPMS has now been purified as His-tag protein with an apparent molecular weight of M r 33 kDa. Additionally, we show here that overexpression of DPMS is indeed angiogenic. The capillary endothelial cells proliferate at a higher rate carrying the DPMS overexpression plasmid over the parental cells or the vector.  相似文献   

9.
Frank CG  Aebi M 《Glycobiology》2005,15(11):1156-1163
N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different alpha-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO.  相似文献   

10.
11.
Freshly prepared protoplasts of Saccharomyces cerevisiae X 2180 incorporate [3H]mannose and [14C]glucose for about 30 min into glycolipids and mannoproteins. Among the radioactive glycolipids formed dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides have been identified. The oligosaccharides released by weak acid from the dolichyl pyrophosphate were treated with endo-N-acetylglucosaminidase H and separated by gel filtration on Bio-Gel P-4. The largest oligosaccharide obtained corresponded exactly in size to Glc3Man9GlcNAc1 the compound formed also in animal tissues. Other oligosaccharides released from dolichyl pyrophosphate in addition to the glucose containing ones were mainly Man9GlcNAc1 and Man8GlcNAc1. No mannosyl oligosaccharide corresponding in size to the total inner core region found in native mannoproteins could be detected in a lipid-bound form.The radioactive dolichyl pyrophosphate oligosaccharides were formed transiently; after 40 min only about 40% of the maximal radioactivity was observed in this fraction. In the presence of cycloheximide this decrease did not take place.It is concluded that the dolichol pathway of N-glycosylation of glycoproteins in yeast cells is very similar, if not identical, to the reaction sequence worked out for animal cells.Dedicated to Professor Dr. Otto Kandler on his 60th birthday  相似文献   

12.
Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipopolysaccharide (LPS) O antigen subunits, which are assembled on an undecaprenyl pyrophosphate lipid carrier. Similarly, PglK (formerly WlaB) is a Campylobacter jejuni-encoded ABC-type transporter proposed to mediate the translocation of the undecaprenylpyrophosphate-linked heptasaccharide intermediate involved in the recently identified bacterial N-linked protein glycosylation pathway. A combination of genetic and carbohydrate structural analyses defined and characterized flippase activities in the C. jejuni N-linked protein glycosylation and the Escherichia coli LPS O antigen biosynthesis. PglK displayed relaxed substrate specificity with respect to the oligosaccharide structure of the LLO intermediate and complemented a wzx deficiency in E. coli O-antigen biosynthesis. Our experiments provide strong genetic evidence that LLO translocation across membranes can be catalyzed by two distinct proteins that do not share any sequence similarity.  相似文献   

13.
Chinese hamster ovary cells express a wide variety of glycoproteins with Mr ranging from 15,000 to 200,000 dalton and higher. Glycosylation of these proteins was much less in cAMP-dependent protein kinase (PKA)-deficient mutants which expressed either (i) a defective C-subunit with altered substrate specificity and having no detectable type II kinase (mutant 10215); or (ii) an altered RI subunit and having no detectable type II kinase (mutant 10248); or (iii) exhibited the lowest level of total kinase with no detectable type I kinase but having a small amount of type II kinase (mutant 10260). Addition of 8Br-cAMP enhanced protein glycosylation index in wild type cells 10001 by 120% but only 7 to 23% in the mutant cells. The rate of lipid-linked oligosaccharide (LLO) biosynthesis was linear for 1 h in all cell types, but the total amount of LLO expressed was much less in PKA-deficient mutants. Pulse-chase experiments indicated that the t1/2 for LLO turnover was also twice as high in PKA-deficient cells as in the wild type. Size exclusion chromatography of the mild-acid released oligosaccharide confirmed that both wild type and the mutant cells synthesized Glc3Man9GlcNAc2-PP-Dol as the most predominating species with no accumulation of Man5GlcNAc2-PP-Dol in the mutants. Kinetic studies exhibited a reduced mannosylphosphodolichol synthase (DPMS) activity in mutant cells with a Km for GDP-mannose 160 to 400% higher than that of the wild type. In addition, the kcat for DPMS was also reduced 2 to 4-fold in these mutant cells. Exogenously added Dol-P failed to rescue the kcat for DPMS in CHO cell mutants; however, in vitro protein phosphorylation with a cAMP-dependent protein kinase restored their kinetic activity to the level of the wild type. Published in 2004.  相似文献   

14.
N-Linked protein glycosylation in most eukaryotic cells initiateswith the transfer of the oligosaccharide Glc3Man9GlcNAc2 fromthe lipid carrier dolichyl pyrophosphate to selected asparagineresidues. In the yeast Saccharomyces cerevisiae, alg mutationswhich affect the assembly of the lipid-linked oligosaccharideat the membrane of the endoplasmic reticulum result in the accumulationof lipid-linked oligosaccharide intermediates and a hypoglycosylationof proteins. Exploiting the synthetic growth defect of alg mutationsin combination with mutations affecting oligosaccharyl transferaseactivity (Stagljar et al., 1994), we have isolated the ALG6locus. alg6 mutants accumulate lipid-linked Man9GlcNAc2, suggestingthat this locus encodes an endoplasmic glucosyltransferase.Alg6p has sequence similarity to Alg8p, a protein required forglucosylation of Glc1Man9GlcNAc2. Saccharomyces cerevisiae endoplasmic reticulum glycosyltransferase dolichol  相似文献   

15.
Gao N  Lehrman MA 《Glycobiology》2002,12(5):353-360
Lipid-linked oligosaccharides (LLOs) are the precursors of asparagine (N)-linked glycans, which are essential information carriers in many biological systems, and defects in LLO synthesis cause Type I congenital disorders of glycosylation. Due to the low abundance of LLOs and the limitations of the chemical and physical methods previously used to detect them, simple and sensitive nonradioactive methods for LLO analysis are lacking. Thus, almost all studies of LLO synthesis have relied on metabolic labeling of the oligosaccharides with radioactive sugar precursors. We report that LLOs in cell cultures and tissues can be easily detected and quantified with a sensitivity of 1-2 pmol by fluorophore-assisted carbohydrate electrophoresis (FACE). These analyses required efficient removal of contaminants, most likely trace quantities of glycogen breakdown products, that interfered with FACE. Studies with CHO-K1 cells showed that LLOs detected by FACE and by metabolic labeling had similar turnover rates. Glc(3)Man(9)GlcNAc(2)-P-P-dolichol was the most prominent LLO detected by FACE in normal cultured cells and mouse tissues. However, the relative amounts of Glc(0-2)Man(5-9)GlcNAc(2)-P-P-dolichol intermediates in tissues, such as liver and kidney, were unexpectedly greater than for cultured cells. IV injection of D-mannose, raising the circulatory concentration by three- to fourfold, did not affect LLO composition. Thus, the relative accumulation of LLO intermediates in mouse liver and kidney is not likely due to inadequate D-mannose in the circulation. In summary, FACE is a facile, accurate, and sensitive method for LLO analysis, permitting investigations not feasible by metabolic labeling.  相似文献   

16.
Protein glycosylation is one of the most common post-translational modifications present in the eukaryotic cell. The N-linked glycosylation is a biosynthetic pathway where an oligosaccharide is added to asparagine residues within the endoplasmic reticulum. Upon addition of the N-linked glycan to nascent proteins, α-glucosidase I removes the outermost α1,2-glucose unit from the N-linked core Glc3Man9GlcNAc2. We have previously demonstrated that the endoplasmic reticulum α-glucosidase I is required for normal cell wall composition, and virulence of the human pathogen Candida albicans. In spite of the importance of this enzyme for normal cell biology, little is known about its structure and the amino acids participating in enzyme catalysis. Here, a DNA fragment corresponding to the 3′-end fragment of C. albicans CWH41, the encoding gene for α-glucosidase I, was expressed in a bacterial system and the recombinant peptide showed α-glucosidase activity, despite lacking 419 amino acids from the N-terminal end. The biochemical characterisation of the recombinant enzyme showed that presence of hydroxyl groups at carbons 3 and 6, and orientation of hydroxyl moiety at C-2 are important for glucose recognition. Additionally, results suggest that cysteine rather than histidine residues are involved in the catalysis by the recombinant enzyme.  相似文献   

17.
The neuronal ceroid lipofuscinoses (NCLs, also known collectively as Batten disease) are a group of lysosomal storage disorders characterized by the accumulation of autofluorescent storage material in the brain and other tissues. A number of genes underlying various forms of NCL have been cloned, but the basis for the neurodegeneration in any of these is unknown. High levels of dolichol pyrophosphoryl oligosaccharides have previously been demonstrated in brain tissue from several NCL patients, but the specificity of the effect for the NCLs has been unclear. In the present study, we examine eight mouse models of lysosomal storage disorders by modern FACE and found striking lipid-linked oligosaccharide (LLO) accumulation in NCL mouse models (especially CLN1, CLN6, and CLN8 knockout or mutant mice) but not in several other lysosomal storage disorders affecting the brain. Using a mouse model of the most severe form of NCL (the PPT1 knockout mouse), we show that accumulated LLOs are not the result of a defect in LLO synthesis, extension, or transfer but rather are catabolic intermediates derived from LLO degradation. LLOs are enriched about 60-fold in the autofluorescent storage material purified from PPT1 knockoutmouse brain but comprise only 0.3% of the autofluorescent storage material by mass. The accumulation of LLOs is postulated to result from inhibition of late stages of lysosomal degradation of autophagosomes, which may be enriched in these metabolic precursors.  相似文献   

18.
19.
The lipid-linked precursor ofN-type glycoprotein oligosaccharides was isolated from porcine thyroid microsomes after in cubation with UDP[3H] Glucose. The carbohydrate was released from dolichol pyrophosphate by mild acid hydrolysis, purified by gel filtration and characterized by 500-MHz1H-NMR spectroscopy in combination with enzymatic degradation. The parent oligosaccharide was found to be Glc3Man9Glc-NAc2. The three glucose residues are present in the linear sequence Glcα1-2Glα1-3 Glc, the latter being α(1-3)-linked to one of the mannose residues. In order to establish the branch location of the triglucosyl unit, the parent compound was digested with jack-bean α-mannosidase. The oligosaccharide product was purified by gel filtration, and identified by1H-NMR as Glc3Man5GlcNAc2 lacking the mannose residues A, D2, B and D3. Therefore, the structure of the precursor oligosaccharide is as follows: $$\begin{gathered} c b a D_1 C 4 \hfill \\ Glc\alpha 1 - 2Glc\alpha 1 - 3Glc\alpha 1 - 3Man\alpha 1 - 2Man\alpha 1 - 2Man\alpha 1 \hfill \\ 3 \swarrow 3 2 1 \hfill \\ Man\alpha 1 - 2Man\alpha 1 Man\beta 1 - 4GlcNAc\beta 1 - 4GlcNAc \hfill \\ D_{2 } A 3 6 \hfill \\ Man\alpha 1 \hfill \\ 6 \hfill \\ Man\alpha 1 - 2Man\alpha 1 \nwarrow 4 \hfill \\ D_3 B \hfill \\ \end{gathered} $$   相似文献   

20.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc3Man9GlcNAc2-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12–14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号