首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

A suite of processes drive variation in coral populations in space and time, yet our understanding of how variation in coral density affects coral performance is limited. Theory predicts that reductions in density can send coral populations into a predator pit, where concentrated corallivory maintains corals at low densities. In reality, how variation in coral density alters corallivory rates is poorly resolved. Here, we experimentally quantified the effects of corallivory and coral density on growth and survival of small colonies of the staghorn coral Acropora pulchra. Our findings suggest that coral density and corallivory have strong but independent effects on coral performance. In the presence of corallivores, corals suffered high but density-independent mortality. When corallivores were excluded, however, vertical extension rates of colonies increased with increasing densities. While we found no evidence for a predator pit, our results suggest that spatio-temporal variation in corallivore and coral densities can fundamentally alter population dynamics via strong effects on juvenile corals.

  相似文献   

2.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

3.
Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembly). The processes underlying such changes are not well understood due to a scarcity of long-term studies with sufficient taxonomic resolution. We assessed the trajectories and time frames for coral recovery and reassembly of coral communities following disturbances, using modeled trajectories based on data from a broad spatial and temporal monitoring program. We studied coral communities at six reefs that suffered substantial coral loss and subsequently regained at least 50 % of their pre-disturbance coral cover. Five of the six communities regained their coral cover and the rates were remarkably consistent, taking 7–10 years. Four of the six communities reassembled to their pre-disturbance composition in 8–13 years. The coral communities at three of the reefs both regained coral cover and reassembled ten years. The trajectories of two communities suggested that they were unlikely to reassemble and the remaining community did not regain pre-disturbance coral cover. The communities that regained coral cover and reassembled had high relative abundance of tabulate Acropora spp. Coral communities of this composition appear likely to persist in a regime of pulse disturbances at intervals of ten years or more. Communities that failed to either regain coral cover or reassemble were in near-shore locations and had high relative abundance of Porites spp. and soft corals. Under current disturbance regimes, these communities are unlikely to re-establish their pre-disturbance community composition.  相似文献   

4.
Declines in coral cover are generally associated with increases in the abundance of fleshy algae. In many cases, it remains unclear whether algae are responsible, directly or indirectly, for coral death or whether they simply settle on dead coral surfaces. Here, we show that algae can indirectly cause coral mortality by enhancing microbial activity via the release of dissolved compounds. When coral and algae were placed in chambers together but separated by a 0.02  μ m filter, corals suffered 100% mortality. With the addition of the broad-spectrum antibiotic ampicillin, mortality was completely prevented. Physiological measurements showed complementary patterns of increasing coral stress with proximity to algae. Our results suggest that as human impacts increase and algae become more abundant on reefs a positive feedback loop may be created whereby compounds released by algae enhance microbial activity on live coral surfaces causing mortality of corals and further algal growth.  相似文献   

5.
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.  相似文献   

6.
Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.  相似文献   

7.
Connell  J. H. 《Coral reefs (Online)》1997,16(1):S101-S113
Coral Reefs -  Trends in the health of coral reefs worldwide were examined by surveying the literature for quantitative studies of coral abundance that were at least four years long and...  相似文献   

8.
Oxidative stress and seasonal coral bleaching   总被引:8,自引:0,他引:8  
During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.  相似文献   

9.
While there is an urgent demand to establish reliable ecotoxicological assays for reef corals, there has not been yet an available source material that can supply the high number of colony replicates needed for reliable tests. In past experiments, the major obstacle to obtaining as many fragments as possible had been the damage inflicted to donor colonies by pruning. In this paper, we present the application of coral nubbins, a novel source material for coral ecotoxicology assays. Nubbins from the branching Red Sea coral Stylophora pistillata (n>450) were used for evaluating the impacts of water soluble fractions from a crude oil, an oil dispersant and dispersed oil. Coral nubbins (minute coral fragments in the size of one to several polyps) harvested from a single colony are genetically identical to each other, may be obtained in any quantity needed and whenever research activities demand their use. Several dozens of nubbins can be obtained from a single small branch in branching coral species, a procedure that has minimal impact on donor genotypes. Nubbins production is a low cost procedure and requires limited maintenance space. Results of short and long-term acute ecotoxicological tests are revealed and discussed here, indicating the advantageous use of nubbins as ubiquitous coral material for toxicology assays and physiological studies.  相似文献   

10.
Regional anthropogenic processes such as pollution, dredging, and overfishing on coral reefs currently threaten the biodiversity of stony corals and other reef-associated organisms. Global climate change may interact with anthropogenic processes to create additional impacts on coral diversity in the near future. In order to predict these changes, it is necessary to understand the magnitude and causes of variation in scleractinian coral diversity throughout their 240 million year history. The fossil record documents long periods of speciation in corals, interrupted repeatedly by events of mass extinction. Some of these events relate clearly to changes in global climate. Diversity in reef corals has increased since their last period of extinction at the end of the Cretaceous (65 My bp ), and is still rising. During the last 8 million years, the fragmentation of the once pantropical Tethys Sea separated corals into two major biogeographical provinces. Periods of glaciation also have caused major changes in sea level and temperature. Accumulated evidence supports the theory that relative habitat area and changing patterns of oceanic circulation are mainly responsible for the two observed centres of recent coral diversity at the western tropical margins of the Atlantic and Pacific oceans. At predicted rates of climate change in the near future, coral reefs are likely to survive as an ecosystem. Increases in sea level may actually benefit corals and lead to regional increases in diversity if new habitat area on back reefs is opened to increased water circulation and thus coral dispersal. Rising temperature may cause higher rates of coral mortality and even local extinction in isolated, small populations such as those on oceanic islands. The effects of increases in ultraviolet radiation (UV) are largely unknown, but likely to be negative. UV may damage planktonic coral propagules in oceanic surface waters and thus decrease rates of gene flow between coral populations. This may result in increased local extinctions, again with the strongest impact on widely separated reefs with small coral populations. The largest threats to coral diversity are regional anthropogenic impacts, which may interact with global climate change to exacerbate rates of local species extinctions. Centres of high reef coral diversity coincide with human population centres in south-east Asia and the Caribbean, and thus the greatest potential for species loss lies in these geographical areas.  相似文献   

11.
Thermal stress and coral cover as drivers of coral disease outbreaks   总被引:5,自引:0,他引:5  
Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50%) cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.  相似文献   

12.
Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long‐term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species ‘winners’ into ‘losers’, and can also facilitate acclimation and turn some coral species ‘losers’ into ‘winners’. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long‐term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean.  相似文献   

13.
Levels of coral cover and abundance on a coral reef flat in Eilat (Israeli Red Sea) were estimated in 2001 by surveying nineteen 10-m transects, and compared to the levels reported in the same area between 1966 and 1973. Lower values compared to 1966 levels are evident, and there has been only a modest recovery following a catastrophic low tide that killed a large proportion of the corals in 1970. Percent cover of soft and stony corals (16.1%) was less than half of that reported for 1969 (35%), when a sharp decrease in coral abundance had already been observed. The total number of soft and stony coral colonies observed was 300, compared to 541 in 1966. In contrast to 1966, when half of the transects surveyed contained more than 30 coral colonies, no transects with this number of corals were observed. The cover of seven of the most common stony coral species was 841 cm, which is twice the coral cover of that in 1973, but only 22% of the 1969 level. Millepora dichotoma, an abundant species before 1970, has almost disappeared, and the soft coral Litophyton, abundant in 1972, was not observed. Anthropogenic nutrient enrichment is apparently among the causes for the lack of coral recovery in the studied reef flat. Reefs located further away from sources of pollution have recovered quickly after natural and anthropogenic disturbances and have retained their coral abundance and diversity.  相似文献   

14.
GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia) and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae) and pink chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of structural determinants of different colors.  相似文献   

15.
Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes (Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.  相似文献   

16.
Overexploitation is one of the principal threats to coral reef diversity, structure, function, and resilience [1, 2]. Although it is generally held that coral reef fisheries are unsustainable [3-5], little is known of the overall scale of exploitation or which reefs are overfished [6]. Here, on the basis of ecological footprints and a review of exploitation status [7, 8], we report widespread unsustainability of island coral reef fisheries. Over half (55%) of the 49 island countries considered are exploiting their coral reef fisheries in an unsustainable way. We estimate that total landings of coral reef fisheries are currently 64% higher than can be sustained. Consequently, the area of coral reef appropriated by fisheries exceeds the available effective area by approximately 75,000 km(2), or 3.7 times the area of Australia's Great Barrier Reef, and an extra 196,000 km(2) of coral reef may be required by 2050 to support the anticipated growth in human populations. The large overall imbalance between current and sustainable catches implies that management methods to reduce social and economic dependence on reef fisheries are essential to prevent the collapse of coral reef ecosystems while sustaining the well-being of burgeoning coastal populations.  相似文献   

17.
珊瑚礁生态保护与管理研究   总被引:6,自引:2,他引:4  
珊瑚礁以其极高的生物多样性和生物生产力以及优美的自然景观 ,为人们提供了生活需要和游乐的资源 ,但同时也受到过度利用的破坏 ,尤其是近年来显得更为严重 ,因而珊瑚礁的生态保护与管理成为近 2 0年来倍受关注的问题。本文回顾了国内外珊瑚礁生态保护和管理的一些研究成果 ,通过自然和社会经济调查 ,并根据保护、研究和可持续利用的原则 ,将雷州半岛灯楼角珊瑚礁保护区划分为野生区 ,保护区、季节性封闭区和一般使用区 ,并强调公众参与、社区组织和领导组成、教育和培训、资源管理等为保护和管理中的措施  相似文献   

18.
Recent findings on the ecology, etiology and pathology of coral pathogens, host resistance mechanisms, previously unknown disease/syndromes and the global nature of coral reef diseases have increased our concern about the health and future of coral reef communities. Much of what has been discovered in the past 4 years is presented in this special issue. Among the significant findings, the role that various Vibrio species play in coral disease and health, the composition of the 'normal microbiota' of corals, and the possible role of viruses in the disease process are important additions to our knowledge. New information concerning disease resistance and vectors, variation in pathogen composition for both fungal diseases of gorgonians and black band disease across oceans, environmental effects on disease susceptibility and resistance, and temporal and spatial disease variations among different coral species is presented in a number of papers. While the Caribbean may still be the 'disease hot spot' for coral reefs, it is now clear that diseases of coral reef organisms have become a global threat to coral reefs and a major cause of reef deterioration.  相似文献   

19.
There is an urgent need for accurate baselines of coral disease prevalence across our oceans in order for sudden or unnatural changes to be recognized. Palmyra Atoll allows us to study disease dynamics under near-pristine, functionally intact conditions. We examined disease prevalence among all known species of scleractinian coral, soft coral and zoanthid (Palythoa) at a variety of coral reef habitats at Palmyra over a 2 yr period. In 2008, overall disease prevalence across the atoll was low (0.33%), but higher on the shallower backreef (0.88%) and reef terrace (0.80%) than on the deeper forereef (0.09%). Scleractinian coral disease prevalence was higher (0.30%) than were soft coral and zoanthid disease (0.03% combined). Growth anomalies (GAs) were the most commonly encountered lesions, with scleractinian species in the genera Astreopora (2.12%), Acropora (1.30%), and Montipora (0.98%) showing the highest prevalence atoll-wide. Discoloration necrosis (DN) was most prevalent in the zoanthid Palythoa tuberculosa (1.18%), although the soft coral Sinulana and Montipora also had a prevalence of 0.44 and 0.01%, respectively. Overall disease prevalence within permanently marked transects increased from 0.65% in 2008 to 0.79% in 2009. Palythoa DN contributed most to this increased prevalence, which coincided with rising temperatures during the 2009 El Ni?o. GAs on the majority of susceptible genera at Palmyra increased in number over time, and led to tissue death. Host distribution and environmental factors (e.g., temperature) appear to be important for determining spatiotemporal patterns of disease at Palmyra. More sophisticated analyses are required to tease apart the likely inter-correlated proximate drivers of disease occurrence on remote, near-pristine reefs.  相似文献   

20.
Benthic cyanobacteria can respond rapidly to favorable environmental conditions, overgrow a variety of reef organisms, and dominate benthic marine communities; however, little is known about the dynamics and consequences of such cyanobacterial blooms in coral reef ecosystems. In this study, the benthic community was quantified at the time of coral spawnings in Guam to assess the substrate that coral larvae would encounter when attempting settlement. Transects at 9, 18, and 25-m depths were surveyed at two reef sites before and after heavy wave action driven by westerly monsoon winds. Communities differed significantly between sites and depths, but major changes in benthic community structure were associated with wave action driven by monsoon winds. A shift from cyanobacteria to crustose coralline algae (CCA) accounted for 44% of this change. Coral recruitment on Guam may be limited by substrate availability if cyanobacteria cover large areas of the reef at the time of settlement, and consequently recruitment may in part depend upon wave action from annual monsoon winds and tropical storms which remove cyanobacteria, thereby exposing underlying CCA and other substrate suitable for coral settlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号