首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The agronomic and physiological traits, drought tolerance indexes, principal component analysis and Ward`s method were applied to assess the differences among 20 wheat genotypes in response to drought. Statistically significant correlation was observed for measured traits. Drought susceptibility index (DSI), stress tolerance index (STI) and stress index (SI) were most useful to identify genotypes differing in their response to drought. Utility of the indexes was confirmed by physiological markers of drought tolerance i.e. membrane injury and leaf water status. Variation of the genotypes in biomass and grain yield during drought stress was also verified by clustering methods. Finally, integration of physiological and statistical methods presented in this work, allows to both, indicate that tolerance to drought in wheat has a common genetic background, and select the most diverse genotypes. Based on the results, we recommend a tool for breeders, useful to select the genotypes resistant and sensitive to drought.

Abbreviations: DM: dry matter; DSI: drought susceptibility index; FWC: field water capacity; GY: grain yield; GMP: geometric mean productivity index; H: plant height; LI: leakage index related to membrane injury; MPRO: mean productivity index; MHAR: harmonic mean index; NoT: number of tillers; NoG, W-1000: number of grains and weight of 1000 grains, respectively; NoLMT, NoLAT, NoLT: number of leaves on main tiller, adventitious tillers and total leaf number, respectively; PCA: principal component analysis; RTC: relative trait change; RWC, RT, WD: relative water content, relative turgidity and water deficit, respectively SI: stress index; SPAD: leaf greening; STI: stress tolerance index; TI: tolerance index; WCA: Ward`s cluster analysis.  相似文献   


2.
In arid and semi‐arid regions of the world, including Iran, soil salinity is one of the major abiotic stresses. One of the ways to achieve high performance in these areas is to use salt‐tolerant varieties of wheat. Iran is known as one of the places where the D‐genome originated and evolved. In order to evaluate the salt tolerance of Iranian genotypes based on the eight indices using analysis of variance, regression and an artificial neural network (ANN), 41 Iranian wheat varieties (Trticum aestivum L.) were planted in a randomised complete block design with three replications under two saline irrigation conditions, 0.631 and 11.8 dS m?1, in Kerman, Iran. Significant differences between the varieties were observed, and the significant two‐way interaction of environment × varieties in combined analysis and non‐significant correlation, 0.07, between the yield in two environments (yield in non‐stress conditions, Yp, and yield in stress conditions, Ys) indicates the existence of genetic variation among varieties and the different responses of the varieties in both the environments. The indices of tolerance, geometric mean product (GMP), mean product (MP), harmonic mean (HM) and stress tolerance index (STI) were calculated based on grain yield evidence of positive significant correlation with Yp and Ys. Based on the ANN results, yield stability index (YSI), MP, GMP and STI were the best indices to predict salinity‐tolerant varieties. The varieties selected based on these indices, such as Bolani, Sistan, Ofogh, Pishtaz, Karchia and Arg, produced high yield in both the environments. These results show that bread wheat originating from Iran has salt tolerance potential and can also be used in studies related to salinity tolerance mechanisms.  相似文献   

3.
Drought has significant effect on wheat production by decreasing grain yield. Phenotyping the populations is a useful tool for understanding the interactions between phenotype and genotype. 135 doubled haploid (DH) genotypes and their parental varieties Plainsman (Pl) and Cappelle Desprez (CD) were phenotyped in glasshouse under well-watered (WW) and drought-stress (DS) conditions. The response of plant height, heading time, aboveground biomass, grain yield, root dry mass harvest index (HI) under both conditions, and stress tolerance index (STI) and water consumption in WW conditions was studied. We found 20% decrease in the plant growth, 66% decrease in the aboveground biomass, and 77% decrease in the grain yield. Under WW conditions, high water consumption was not related to high yields, STI, and HI. The tolerant and the sensitive genotypes were selected. In the WW and water consumption treatment, the sensitive genotype group had better grain yield performance, but under DS, the tolerant group had higher grain yield. The average yield loss was 59% in the tolerant group compared to the WW treatment, and the sensitive yield loss was 68%. Correlation was found between the grain yield and root dry mass in the tolerant group. There was significant difference between the tolerant and sensitive groups on water consumption, as the sensitive genotypes had higher water need. We found strong positive correlation between the water consumption and the grain yield in the tolerant group. This study showed that the tolerant genotypes had improved water regulating efficiency.  相似文献   

4.
Drought causes serious yield losses in cotton production throughout the world. Association mapping allows identification and localization of the genes controlling drought-related traits which will be helpful in cotton breeding. In the present study, genetic diversity analysis and association mapping of yield and drought traits were performed on a panel of 99 upland cotton genotypes using 177 SSR (simple sequence repeat) markers. Yield parameters and drought tolerance-related traits were evaluated for two seasons under two watering regimes: water-stressed and well-watered. The traits included seed cotton yield (SCY), lint yield (LY), lint percentage (LP), water-use efficiency (WUE), yield potential (YP), yield reduction (YR), yield index (YI), drought sensitivity index (DSI), stress tolerance index (STI), harmonic mean (HM), and geometric mean productivity (GMP). The genotypes with the least change in seed cotton yield under drought stress were Zeta 2, Delcerro, Nazilli 87, and DAK 66/3 which were also the most water-use efficient cultivars. The average genetic diversity of the panel was 0.38. The linkage disequilibrium decayed relatively rapidly at 20–30 cM (r2?≥?0.5). We identified 30 different SSR markers associated with the traits. Fifteen and 23 SSR markers were linked to the traits under well-watered and water-stress conditions, respectively. To our knowledge, most of these quantitative yield and drought tolerance-associated loci were newly identified. The genetic diversity and association mapping results should facilitate the development of drought-tolerant cotton lines with high yield in molecular breeding programs.  相似文献   

5.
Drought is one of the critical conditions for the growth and productivity of many crops including mung bean (Vigna radiata L. Wilczek). Screening of genotypes for variations is one of the suitable strategies for evaluating crop adaptability and global food security. In this context, the study investigated the physiological and biochemical responses of four drought tolerant (BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7), and four drought sensitive (BARI Mung-1, BARI Mung-3, BU Mung-4, BMX-05001) mung bean genotypes under wellwatered (WW) and water deficit (WD) conditions. The WW treatment maintained sufficient soil moisture (22% ± 0.5%, i.e., 30% deficit of available water) by regularly supplying water. Whereas, the WD treatment was maintained throughout the growing period, and water was applied when the wilting symptom appeared. The drought tolerant (DT) genotypes BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7 showed a high level of proline accumulation (2.52–5.99 mg g−1 FW), photosynthetic pigment (total chlorophyll 2.96–3.27 mg g−1 FW at flowering stage, and 1.62–2.38 mg g−1 FW at pod developing stage), plant water relation attributes including relative water content (RWC) (82%–84%), water retention capacity (WRC) (12–14) as well as lower water saturation deficit (WSD) (19%–23%), and water uptake capacity (WUC) (2.58–2.89) under WD condition, which provided consequently higher relative seed yield. These indicate that the tolerant genotypes gained better physiobiochemical attributes and adaptability in response to drought conditions. Furthermore, the genotype BMX- 08010-2 showed superiority in terms of those physio-biochemical traits, susceptibility index (SSI) and stress tolerance index (STI) to other genotypes. Based on the physiological and biochemical responses, the BMX-08010-2 was found to be a suitable genotype for sustaining yield under drought stress, and subsequently, it could be recommended for crop improvement through hybridization programs. In addition, the identified traits can be used as markers to identify tolerant genotypes for drought-prone areas.  相似文献   

6.
Chickpea is mostly grown on stored soil moisture, and deep/profuse rooting has been hypothesized for almost three decades to be critical for improving chickpea tolerance to terminal drought. However, temporal patterns of water use that leave water available for reproduction and grain filling could be equally critical. Therefore, variation in water use pattern and root depth/density were measured, and their relationships to yield tested under fully irrigated and terminal drought stress, using lysimeters that provided soil volumes equivalent to field conditions. Twenty chickpea genotypes having similar plant phenology but contrasting for a field-derived terminal drought-tolerance index based on yield were used. The pattern of water extraction clearly discriminated tolerant and sensitive genotypes. Tolerant genotypes had a lower water uptake and a lower index of stomatal conductance at the vegetative stage than sensitive ones, while tolerant genotypes extracted more water than sensitive genotypes after flowering. The magnitude of the variation in root growth components (depth, length density, RLD, dry weight, RDW) did not distinguish tolerant from sensitive genotypes. The seed yield was not significantly correlated with the root length density (RLD) in any soil layers, whereas seed yield was both negatively related to water uptake between 23-38 DAS, and positively related to water uptake between 48-61 DAS. Under these conditions of terminal drought, the most critical component of tolerance in chickpea was the conservative use of water early in the cropping cycle, explained partly by a lower canopy conductance, which resulted in more water available in the soil profile during reproduction leading to higher reproductive success.  相似文献   

7.
Drought stress is a major constraint on cowpea productivity, since the crop is grown under warm conditions on sandy soils having low water‐holding capacity. For enhanced performance of crops facing terminal drought stress, like cowpea, water‐saving strategies are crucial. In this work, the growth and transpiration rate (TR) of 40 cowpea genotypes with contrasting response to terminal drought were measured under well‐watered conditions across different vapour pressure deficits (VPD) to investigate whether tolerant and sensitive genotypes differ in their control of leaf water loss. A method is presented to indirectly assess TR through canopy temperature (CT) and the index of canopy conductance (Ig). Overall, plants developed larger leaf area under low than under high VPD, and there was a consistent trend of lower plant biomass in tolerant genotypes. Substantial differences were recorded among genotypes in TR response to VPD, with tolerant genotypes having significantly lower TR than sensitive ones, especially at times with the highest VPD. Genotypes differed in TR response to increasing VPD, with some tolerant genotypes exhibiting a clear VPD breakpoint at about 2.25 kPa, above which there was very little increase in TR. In contrast, sensitive genotypes presented a linear increase in TR as VPD increased, and the same pattern was found in some tolerant lines, but with a smaller slope. CT, estimated with thermal imagery, correlated well with TR and Ig and could therefore be used as proxy for TR. These results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance. The water‐saving characteristics of some genotypes are hypothesised to leave more soil water for pod filling, which is crucial for terminal drought adaptation.  相似文献   

8.
Drought susceptibility and low genetic variability are the major constraints of lentil (Lens culinaris Medik.) production worldwide. Development of an efficient pre-field drought phenotyping technique and identification of diversified drought tolerant lentil genotype(s) are therefore vital and necessary. Two separate experiments were conducted using thirty diverse lentil genotypes to isolate drought tolerant genotype(s) as well as to assess their diversity. In both of the experiments, significant (p ≤ 0.01) variation in genotype (G), treatment (T) and G X T was observed for most of the studied traits. In experiment I, genotypes were examined for drought tolerance at the seedlings stage under hydroponic conditions by assessing root and shoot traits. Among the 30 genotypes studied, BM-1247, BM-1227 and BM-502 were selected as highly tolerant to drought stress as they showed maximum seedling survivability and minimum reduction in growth parameters under drought stress. In experiment II, the genotypes were assayed for diversity and drought stress tolerance based on morphological traits grown under field condition. Drought stress caused a substantial reduction in yield attributing traits, however, the genotypes BM-1247, BM-981, BM-1227 and BM-502 were categorized as drought tolerant genotypes with less than 20% yield reduction. The field screening result of drought stress tolerance was coincided well with the results of laboratory screening. Genetic divergence study reflected the presence of considerable diversity among the genotypes. Considering laboratory and field screening results, the genotypes, BM-1247, BM-1227, BM-981 and BM- 502 were selected as the best drought tolerant genotypes. This information can be exploited for further breeding in developing drought tolerance in lentil.  相似文献   

9.
Two wheat (Triticum aestivum L.) genotypes with varying degree of drought tolerance were used to analyze programmed cell death (PCD) and related biochemical changes under drought stress. Drought induced PCD in leaves, as evident by internucleosomal nDNA fragmentation, was observed in sensitive genotype Nesser. Drought tolerant genotype (FD-83) showed higher peroxidase, superoxide dismutase, and catalase activities and ascorbate content under drought stress compared to sensitive genotype. Total phenolic content increased whereas lipid peroxidation remained un-changed under drought in FD-83. In contrast, drought enhanced the proteases and ascorbate peroxidase activities and lipid peroxidation (MDA content) in Nesser.  相似文献   

10.

Using agro-morphological characters and microsatellite markers, advance breeding lines of rice were discriminated for their ability to tolerate drought stress at reproductive stage. Experimental materials consisting of 17 advance breeding lines and a check were evaluated in randomized block design with three replications under irrigated condition and drought condition created under rainout shelter during three consecutive years. An analysis of variance revealed significant differences among the genotypes for all the ten agro-morphological characters evaluated under both the conditions across the years. Principal component analysis showed the relative importance of root length, number of tillers per plant, number of grains per panicle, harvest index and grain yield per plant among agro-morphological characters and stress tolerance level, stress susceptibility index, stress tolerance index and drought tolerance efficiency among drought tolerance indices as the important classification variables. Relative mean performance in respect of grain yield as well as drought tolerance indices reflected remarkably greater degree of drought tolerance in 11 advance breeding lines and the check, discriminating them from remaining entries under evaluation. Utilizing a panel of 32 microsatellite primers, selective amplification of targeted genomic regions revealed that the primers RM 72, RM 163, RM 212, RM 225, RM 231, RM 302, RM 327, RM 518, RM 521, RM 555, RM 1349, RM 3549 and RM 5443 were highly informative with greater gene diversity and discrimination ability. Hierarchical cluster analysis based on molecular profiles discriminated the entries into five genotypic groups and drought tolerant entries were accommodated into three distinct groups with remarkably greater efficiency (85.7%). Principal coordinate analysis based two dimensional plots of microsatellites dependent genetic profiles displayed a very close correspondence with the genotypic clustering pattern revealed from a perusal of dendrogram. Sequential exclusion of primers in cluster analysis led to identification of RM 212, RM 231, RM 324, RM 431, RM 521, RM 3549 and RM 6374 as the most useful primers for discrimination of drought tolerant and susceptible lines of rice. Molecular profiling based on these markers can be utilized as efficient tools for discrimination and identification of drought tolerant lines.

  相似文献   

11.
Seedlings of selected six genotypes of maize (Zea mays L.) differing in their drought sensitivity (LM5 and Parkash drought-tolerant and PMH2, JH3459, Paras and LM14 as drought-sensitive) were exposed to 72 h drought stress at two leaf stage. Alterations in their antioxidant pools combined with activities of enzymes involved in defense against oxidative stress were investigated in leaves. Activities of some reactive oxygen species (ROS)-scavenging enzymes, catalase (CAT) and ascorbate peroxidase (APX) were enhanced in tolerant genotypes in response to drought stress. Superoxide dismutase (SOD) activity was significantly decreased in sensitive genotypes, but remained unchanged in tolerant genotypes under stress. Peroxidase (POX) activity was significantly induced in tolerant, as well as sensitive genotypes. Imposition of stress led to increase in H2O2 and malondialdehyde (MDA, a marker for lipid peroxidation) content in sensitive genotypes, while in tolerant genotypes no change was observed. Significant increase in glutathione content was observed in sensitive genotypes. Ascorbic acid pool was induced in both tolerant and sensitive genotypes, but induction was more pronounced in tolerant genotypes. Significant activation of antioxidative defence mechanisms correlated with drought-induced oxidative stress tolerance was the characteristic of the drought tolerant genotypes. These studies provide a mechanism for drought tolerance in maize seedlings.  相似文献   

12.
Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.  相似文献   

13.
Water status parameters, flag leaf photosynthetic activity, abscisic acid (ABA) levels, grain yield, and storage protein contents were investigated in two drought-tolerant (Triticum aestivum L. cv. MV Emese and cv. Plainsman V) and two drought-sensitive (cvs. GK élet and Cappelle Desprez) wheat genotypes subjected to soil water deficit during grain filling to characterize physiological traits related to yield. The leaf water potential decreased earlier and at a higher rate in the sensitive than in the tolerant cultivars. The net CO2 assimilation rate (P N) in flag leaves during water deficit did not display a strict correlation with the drought sensitivity of the genotypes. The photosynthetic activity terminated earliest in the tolerant cv. Emese, and the senescence of flag leaves lasted 7 days longer in the sensitive Cappelle Desprez. Soil drought did not induce characteristic differences between sensitive and tolerant cultivars in chlorophyll a fluorescence parameters of flag leaves during post-anthesis. Changes in the effective quantum yield of PSII (ΦPSII) and the photochemical quenching (qP) depended on the genotypes and not on the sensitivity of cultivars. In contrast, the levels of ABA in the kernels displayed typical fluctuations in the tolerant and in the sensitive cultivars. Tolerant genotypes exhibited an early maximum in the grain ABA content during drought and the sensitive cultivars maintained high ABA levels in the later stages of grain filling. In contrast with other genotypes, the grain number per ear did not decrease in Plainsman and the gliadin/glutenin ratio was higher than in the control in Emese during drought stress. A possible causal relationship between high ABA levels in the kernels during late stages of grain filling and a decreased grain yield was found in the sensitive cultivars during drought stress.  相似文献   

14.
The identification of morpho-physiological traits related to drought tolerance and high yield potential is a challenge when selecting sugar beet genotypes with greater tolerance to water stress. In this paper, root morphological parameters, antioxidant systems, leaf relative water content (RWC) and H+-ATPase activity as key morpho-physiological traits involved in drought tolerance/susceptibility of sugar beet were studied. Genotypes showing a different drought tolerance index (DTI) but a similar yield potential, under moderate (?0.6 Mpa) and severe (?1.2 MPa) water stress, were selected and their morpho-physiological traits were investigated. The results showed a wide genetic variation in morpho-physiological parameters which demonstrated the different adaptive strategies under moderate and severe drought conditions in sugar beet. In particular, an efficient antioxidant system and redox signalling made some sugar beet genotypes more tolerant to drought stress. The alternative strategy of other genotypes was the reduction of root tissue density, which produced a less dense root system improving the axial hydraulic conductivity. These results could be considered as interesting challenge for a better understanding of the drought tolerance mechanisms in sugar beet.  相似文献   

15.
This work investigated the variability in drought tolerance under arid conditions of Mediterranean alfalfa genotypes with the overall aim to assess the main criteria that are associated with the relative tolerance and to discover the most tolerant ecotypes. For this, 16 alfalfa genotypes originating from seven countries of the Mediterranean basin were tested in an experimental station in south of Tunisia. The trial was conducted under two irrigation treatments. The first was normally irrigated by providing an amount of water corresponding to the potential evapotranspiration of the crop, and in the second with water deficit which was applied by stopping the irrigation during 8 weeks in summer. A significant decrease was observed under water deficit for biomass production, leaf stem ratio and water use efficiency. The sensitive index, in stress treatment, varies between 13.8% and 46.2% for dry yield. Results showed that some genotypes exhibited high-forage yield potential even in the presence of stress, mainly Amerist, Sardi10 and Siriver. Proline accumulation in leaves was greater in water-stressed plants, while the K+ osmo-regulatory role was not definite. High biomass production, accumulation of proline and constancy of K+ in leaves are the most important criteria for tolerant alfalfa.  相似文献   

16.
17.
Rice is one of the most important food crop drastically affected by drought in lowland rice ecosystem. Dissecting out the traits of importance and genomic regions influencing the response of drought tolerance and yield traits on grain yield will aid the breeders to know the genetic mechanism of drought tolerance of rice leads to the development of drought tolerant varieties. Grain yield and its components on drought situation of recombinant inbred population (IR 58821/IR 52561) were investigated under lowland managed stress situation in 2003 and 2004 by given importance to the relative water content. Water deficit resulted in significant effect on phenology and grain yield. Best lines were selected for further varietal development programme. Variability studies showed the traits viz., days to 70% relative water content, leaf rolling, leaf drying, harvest index, biomass yield and grain yield offer high scope for improvement for drought tolerance by way of simple selection technique. Correlation and path analysis indicated that, to harness high yielding combined with drought tolerance breeders should give selection pressure on relative water content, panicle length, grains per panicle, harvest index, biomass yield, root/shoot ratio and root length in positive direction, and low scores of leaf rolling, leaf drying and drought recovery rate. Analysis of quantitative trait loci for drought tolerance, yield and its components allowed the identification of 38 regions associated with both drought tolerant and yield traits. Out of these, 18 were closely linked with DNA markers could be used for marker assisted selection in breeding for drought tolerance in rice. Pleiotropism and G × E effects interaction were noticed in some of the traits. Parent IR 58821 contributed favorable alleles for the entire drought related and most of the yield component traits. Identification of traits of importance and their nature of relationship by morphological and molecular level under lowland condition will be useful to improve drought tolerance of rice.  相似文献   

18.
As the concentrations of essential vitamins and minerals and a number of other health‐promoting compounds are often low in stable crops, research is under way to understand and increase synthesis of phytochemicals in order to improve crop nutritional quality. The question addressed in this study is whether shoot genotypes or root genotypes with tolerant drought character are able to increase the fruit quality and production under moderate water stress. Zarina (drought tolerant) and Josefina (drought sensitive) were grafted self and reciprocally. The results showed that the use of cv. Zarina (drought tolerant) as rootstock (Zar × Jos) results in a greater number of fruits under water‐stress conditions, a moderate increase in some antioxidant compounds, such as ascorbic acid, phenols and flavonoids and lycopene and β‐carotene, and Zar × Jos showed high levels of sugars and organic acids, sweetness index and sugars : acids ratio, as well as important minerals, such as K and Mg, which could increase its nutritional quality under stress conditions. Overall, the use of drought‐tolerant rootstock could provide a useful tool to improve fruit yield and quality of cherry tomato fruit under moderate water stress, which in turn could mean lower costs in the use of irrigation water.  相似文献   

19.
Drought is a severe environmental constraint to plant productivity and an important factor limiting barley yield. To investigate the initial response of barley to drought stress, changes in protein profile were analyzed using a proteomics technique. Three-day-old barley seedlings of sensitive genotype 004186 and tolerant genotype 004223 were given two treatments, one with 20 % polyethylene glycol and the second with drought induced by withholding water. After 3 days of treatments, proteins were extracted from shoots and separated by 2-dimensional polyacrylamide gel electrophoresis. Metabolism related proteins were decreased in the sensitive genotype under drought; however, they were increased in the tolerant genotype. Photosynthetic related proteins were decreased and increased among the three sensitive and three tolerant genotypes, respectively. In addition, amino acid synthesis and degradation related proteins were increased and decreased among the three tolerant genotypes. These results suggest that chloroplastic metabolism and energy related proteins might play a significant role in the adaptation process of barley seedlings under drought stress.  相似文献   

20.

Background and aim

Intuitively, access to water from the soil at key phenological stages is important for adaptation to drought. This study aimed to assess the temporal pattern of water extraction under terminal drought stress.

Methods

Pearl millet genotypes with varying levels of terminal drought tolerance were grown in a lysimetric system with a soil volume and plant spacing similar to field conditions. Water extraction was monitored until maturity under differing water regimes.

Results

The yield did not differ among genotypes under well-watered (WW) conditions, and the water extraction profile of WW plants was similar across all genotypes. In contrast, the yield of sensitive genotypes was 30–100 % lower than that of tolerant lines under water stress (WS). The total volumes of water extracted by tolerant and sensitive genotypes were similar under WS; however, tolerant genotypes extracted less water prior to anthesis, and more water after anthesis. Grain yield was positively related to the amount of water extracted during week three after panicle emergence. Increased water extraction after anthesis benefitted the tillers more than the main culm and was correlated with higher staygreen scores.

Conclusion

Increased water uptake after anthesis, which results from earlier water conservation during pre-anthesis, increases yield under terminal drought in pearl millet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号