首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The effects of habitat restoration measures designated to promote farmland biodiversity have been documented at the field scale, but little is known about their role in restoring the agricultural mosaic. In this study, we analyzed the effects of wildflower strips (WFS) at the field scale and in the landscape context on butterflies in a Swiss arable landscape. Three hypotheses were tested: (1) butterfly diversity and abundance are higher in WFS than in conventional fields; (2) butterfly diversity and abundance are enhanced by the amount, proximity and connectivity of WFS in the landscape context; (3) additional factors influence butterfly diversity and abundance according to individual site conditions and landscape context characteristics linked to other landscape elements. WFS had more species and individuals of butterflies than conventional habitats. However, promoted species were mainly generalists; few specialists were enhanced. The diversity of all butterflies and of generalists increased linearly with percent cover of WFS, reflecting an effect of restoration measures depending on the landscape context. The influence of proximity and connectivity of WFS were, however, not significant. The occurrence of specialists was conditioned by plant species richness, while the effect of WFS for overall diversity was affected by the amount of grassland in the surroundings. We conclude that to increase the effectiveness of biodiversity‐orientated restoration measures, their implementation should be steered toward increasing the share of WFS in the landscape. However, the combination of WFS with additional restoration measures might be needed to halt the decline of specialist species.  相似文献   

2.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

3.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

4.
Declines of West European farmland birds have been associated with intensive agricultural practices, while in Central and Eastern European countries grasslands still harbour a diverse and unique bird community. However, in these countries comparative studies on the effects of agricultural intensity on biodiversity are virtually missing. We compared bird communities of paired extensively and intensively grazed cattle pastures in three different regions of the Hungarian Great Plain. The influence of grazing intensity, landscape and regional effects were tested on the abundance and species richness of two ecological groups of bird species (grassland and non-grassland birds), as well as on the abundance of the three commonest grassland bird species (Skylark, Yellow wagtail, Corn bunting) in linear mixed models. We found significant effects of grazing intensity on the abundance of grassland birds, which were more abundant on the extensive sites, whereas no effects were found on non-grassland birds. This could be explained by a closer dependence of grassland birds on grasslands for nesting and foraging, whereas non-grassland birds only used grasslands opportunistically for foraging. Landscape effect was shown on grassland bird abundance, but not on non-grassland birds. The regions did affect only the species richness of grassland birds. At species level, the effect of management was significant for the three commonest grassland species, which were more abundant on the extensive fields in all regions. Additionally, on Skylark abundance landscape and regional effects were also shown. These findings suggest that conservation of biodiversity in agricultural systems requires the consideration of landscape perspective to apply the most adequate management.  相似文献   

5.
Agricultural landscapes worldwide are under increased pressure to provide food, feed, fiber, and fuel for a growing human population. These demands are leading to changes in agricultural landscapes and subsequent declines in biodiversity. We used citizen science data from the North American Butterfly Association and remotely-sensed land cover data from the US Department of Agriculture to study relationships between agricultural landscape composition and butterfly community structure in the Midwestern US. Landscape-level butterfly species richness (based on rarefaction estimates) was highest in agricultural landscapes with relatively low amounts of cropland, relatively high amounts of woodland, and intermediate amounts of grassland and wetland. Rarefied richness generally declined with the dominance of any of these land cover types. Unlike other land cover types, urban development had a consistent negative effect on rarefied richness. Butterfly community structure (based on relative abundance) was also significantly related to the amount of cropland, woodland, grassland, and wetland in the landscape. The rarest butterfly species were associated with woodland-, grassland-, and wetland-dominated landscapes, likely due to their association with plant species occurring in savannahs, prairies, and marshes, respectively. Assuming that variation across space reflects changes over time, our results support conclusions from previous studies that removal of natural and seminatural habitats alters butterfly community structure and decreases species diversity in agricultural landscapes.  相似文献   

6.
随着气候变化加剧和人类活动影响,生物多样性变化及其保护逐渐受到广泛关注。蝴蝶作为开花植物的传粉媒介和生态环境监测及评价的关键指示者,其多样性变化能够在一定程度上反映生境状况,因此,有必要清晰认识不同生境中的蝴蝶多样性变化。为明确松嫩平原蝴蝶资源和不同生境的群落多样性差异,采用样线法于2016年5月-2018年8月对松嫩平原的割草草地、湿地、农田、放牧利用草地及恢复草地共五种生境类型进行调查研究。结果发现,调查共记录蝴蝶5108头,隶属于6科21属26种,其中牧女珍眼蝶(Coenonympha amaryllis)和红珠灰蝶(Plebejus argyrognomon)为优势种类,分别占蝴蝶个体总数的25.61%和31.66%,且在五种生境类型中均有分布。不同生境类型中,蝴蝶群落的物种丰富度指数和均匀度指数无明显差异,而恢复草地生境的蝴蝶群落Shannon-Wiener多样性指数较高,优势度指数较低。农田生境中的蝴蝶个体数量较少,且群落组成与其他四种生境之间均具有显著差异。五种生境类型中的蝴蝶数量和多样性均呈现一定的月动态和年动态变化趋势。除湿地和农田外,其余三种生境中蝴蝶物种和个体数量从5月到8月均持续升高。四种生境的蝴蝶物种数量、个体数量(除农田外)在2018年均出现明显下降趋势。物种丰富度指数等指标的月动态和年动态在不同生境类型间存在较大差异。这些结果表明,生境类型和人类活动与蝴蝶多样性变化关系密切,表现为单一生境中蝴蝶多样性较低,复杂生境有利于保护蝴蝶多样性。本研究有助于厘清松嫩平原蝴蝶资源的基础数据,并为该地区蝴蝶多样性保护和利用及评估该区域生态环境提供一定理论支撑。  相似文献   

7.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

8.
Measures of functional diversity are expected to predict community responses to land use and environmental change because, in contrast to taxonomic diversity, it is based on species traits rather than their identity. Here, we investigated the impact of landscape homogenisation on plants, butterflies and birds in terms of the proportion of arable field cover in southern Finland at local (0.25 km2) and regional (> 10 000 km2) scales using four functional diversity indices: functional richness, functional evenness, functional divergence and functional dispersion. No uniform response in functional diversity across taxa or scales was found. However, in all cases where we found a relationship between increasing arable field cover and any index of functional diversity, this relationship was negative. Butterfly functional richness decreased with increasing arable field cover, as did butterfly and bird functional evenness. For butterfly functional evenness, this was only evident in the most homogeneous regions. Butterfly and bird functional dispersion decreased in homogeneous regions regardless of the proportion of arable field cover locally. No effect of landscape heterogeneity on plant functional diversity was found at any spatial scale, but plant species richness decreased locally with increasing arable field cover. Overall, species richness responded more consistently to landscape homogenisation than did the functional diversity indices, with both positive and negative effects across species groups. Functional diversity indices are in theory valuable instruments for assessing effects of land use scenarios on ecosystem functioning. However, the applicability of empirical data requires deeper understanding of which traits reliably capture species’ vulnerability to environmental factors and of the ecological interpretation of the functional diversity indices. Our study provides novel insights into how the functional diversity of communities changes in response to agriculturally derived landscape homogenisation; however, the low explanatory power of the functional diversity indices hampers the ability to reliably anticipate impacts on ecosystem functioning.  相似文献   

9.
Landscape homogenisation represents one of the gravest threats to the biodiversity of intensively farmed landscapes. In such landscapes, many species persist within remnants of (semi)natural habitats, such as in the steppe grasslands of Southern Moravia, SE Czech Republic. We investigated how the butterfly fauna of insular grassland reserves is affected by the heterogeneity of the surrounding farmland. We followed two lines of evidence, one based on species richness, the other on species community composition, considering two aspects of landscape heterogeneity, composition (amount of land cover types) and configuration (geometry of land cover patches). After statistically correcting for individual reserves characteristics, and within-reserves biotope composition, we found that reserves amidst heterogeneous landscapes contained more species. With increasing buffers around the reserves, the strength of the effects decreased for landscape composition, and increased for landscape configuration. Similar patterns applied for the butterfly assemblage composition, but in a rather subtle manner, not reflecting a specialist versus generalist dichotomy. However, more red-listed species inclined towards reserves amidst heterogeneous matrices. The species most tightly associated with heterogeneous landscapes were those whose populations likely span across multiple patches of relatively rare biotopes, whereas those indifferent to configuration were either those persisting at isolated sites, or those utilising common biotope types outside the reserves. The importance of landscape configuration suggests that relatively cheap restoration measures aimed at compartmentalisation the currently huge farmland units may substantially contribute to preserving biodiversity in intensively farmed regions.  相似文献   

10.
Gaigher  R.  Pryke  J. S.  Samways  M. J. 《Biodiversity and Conservation》2021,30(13):4089-4109

Habitat loss threatens insect diversity globally. However, complementary vegetation types in remaining habitat increases opportunities for species survival. We assess the extent to which indigenous forest patches moderate the impact of exotic commercial afforestation on grassland butterflies. Butterflies were sampled in grassland along uncorrelated gradients of landscape-scale indigenous forest and plantation cover, while controlling for variation in local vegetation composition. We separately assessed responses by butterfly groups differing in habitat preference, larval diet, and mobility. There was no effect of landscape- or local-scale variables on species richness, but there was a strong interactive effect of forest and plantation cover on butterfly assemblage structure. The effect varied according to species traits. When forest cover was high, assemblages did not differ at different levels of plantation cover. However, plantation cover significantly influenced assemblage structure when forest cover was low. Grassland with limited forest cover in the protected area supported unique assemblages with high frequency of less mobile, specialized species with herbaceous larval host plants, whereas grassland with low forest cover near plantations had a prevalence of mobile, generalist species. A positive association between forest cover and butterflies with woody larval host plants suggests that indigenous forest patches improved the suitability of fragmented grassland for a subset of butterflies, emphasising the value of natural heterogeneity in transformed areas. However, certain butterfly traits associated with large, open grassland were under-represented in grassland between plantations, underscoring the importance of open areas in the broader landscape to conserve the full diversity of species.

  相似文献   

11.
Agriculture is a primary factor underlying world-wide declines in biodiversity. However, different agricultural systems vary in their effects depending on their resemblance to the natural ecosystem, coverage across the landscape, and operational intensity. We combined data from the North American Breeding Bird Survey with remotely sensed measures of crop type and linear woody feature (LWF) density to study how agricultural type, woody structure and crop heterogeneity influenced the avian community at landscape scales across a broad agricultural region of eastern Canada. Specifically, we examined whether 1) avian diversity and abundance differed between arable crop agriculture (e.g., corn, soy) and forage (e.g., hay) and pastoral agriculture, 2) whether increasing the density of LWF enhances avian diversity and abundance, and 3) whether increasing the heterogeneity of arable crop types can reduce negative effects of arable crop amount. Avian diversity was lower in landscapes dominated by arable crop compared to forage agriculture likely due to a stronger negative correlation between arable cropping and the amount of natural land cover. In contrast, total avian abundance did not decline with either agricultural type, suggesting that species tolerant to agriculture are compensating numerically for the loss of non-tolerant species. This indicates that bird diversity may be a more sensitive response than bird abundance to crop cover type in agricultural landscapes. Higher LWF densities had positive effects on the diversity of forest and shrub bird communities as predicted. Higher crop heterogeneity did not reduce the negative effects of high crop amount as expected except for wetland bird abundance. In contrast, greater crop heterogeneity actually strengthened the negative effects of high crop amount on forest bird abundance, shrub-forest edge bird diversity and total bird diversity. We speculate that this was due to negative correlations between crop heterogeneity and the amount of shrub and forest habitat patches in crop-dominated landscapes in our study region. The variable response to crop heterogeneity across guilds suggests that policies aimed at crop diversification may not enhance avian diversity on their own and that management efforts aimed at the retention of natural forest and shrub patches, riparian corridors, and hedge-rows would be more directly beneficial.  相似文献   

12.
Fallows (i.e. fields temporarily taken out of production) provide important habitat for flower-visiting insects in intensively cultivated agricultural landscapes. Cost-efficiency of fallowing schemes could be enhanced through improved understanding of key characteristics of fallows and surrounding landscape that determine community composition and provide support for species of conservation concern. Impacts of fallow characteristics and landscape structure on the species composition of butterflies and bumblebees were studied in two types of perennial fallows in boreal farmland. To understand species’ responses to environmental factors from a conservation perspective, community composition was examined with respect to two species traits—niche breadth and dispersal capacity. Whereas overall species composition of butterflies and bumblebees was strongly affected by forest cover in the surrounding landscape, the studied species traits were most related to fallow type and the cover of perennial grasslands. Habitat breadth of butterflies was narrowest in long-term grassland fallows in landscapes with high grassland cover. Dispersal capacity of butterflies was also lowest in grassland-rich landscapes. Diet breadth of bumblebees was narrower in long-term grassland fallows than in short-term fallows. The results confirm that the diversity of butterflies and bumblebees can be enhanced by establishing and managing fallows both in open and forested landscapes. For conservation of habitat specialists and less mobile species, retention of long-term fallows in grassland-rich landscapes is apparently the best option. The results provide no justification for exempting forested regions or farms with high grassland cover from the ecological focus area requirement under the European Union’s current agricultural policy.  相似文献   

13.
Landscape effects on butterfly assemblages in an agricultural region   总被引:11,自引:0,他引:11  
We examined the butterfly fauna at 62 sites in southeastern Sweden within a region exhibiting high variation in the landscape surrounding the studied grasslands. The landscape varied from an intensively-managed agricultural landscape with a large amount of open fields to a landscape with a high amount of deciduous forest/semi-natural grassland. We made 12 179 observations of 57 species of butterflies. The amount of neighbouring deciduous forest/semi-natural grassland, with >25% tree and bush cover, was the most important environmental factor explaining the variation in the butterfly assemblages. Landscape analyses at three different spatial scales showed that the variation in butterfly assemblages could be explained only at the largest scale (radius 5000 m) and not at the smaller ones (radii 500 and 2000 m).
Logistic regressions were used to predict presence/absence of butterfly species. Our study indicated that there may be critical thresholds for the amount of habitat at the landscape scale for several butterfly species as well as for species richness. For Melitaea athalia , there was a sharp increase in occupancy probability between 3 and 10% deciduous forests/semi-natural grasslands at the 5000-m scale. For 12 other species, the value for 50% probability of occurrence varied between 2 and 12% deciduous forest/semi-natural grassland. Species which had high occupancy probabilities in landscapes with a low amount of surrounding deciduous forests/semi-natural grasslands were significantly more mobile than others.
Our study highlights the importance of applying a landscape perspective in conservation management, and that single-patch management might fail in maintaining a diverse butterfly assemblage.  相似文献   

14.
马琦  李爱民  邓合黎 《生态学报》2012,32(5):1458-1470
在三峡库区蝶类物种多样性调查基础上,从等级多样性角度进行分析,结果表明,蝴蝶属级,科级和等级多样性指数在灌丛生境较高,森林、农田和草地生境多样性较低;非参数检验和方差分析结果表明4种生境在属级和等级多样性上差异显著,灌丛生境和其他生境差异显著。海拔500-1500m高度,蝴蝶的生物多样性相对较高,是库区蝴蝶最重要的生存地带。属级和科级多样性指数的变异系数在森林植被型样本间最大,前者有4个小生境在100%以上,后者有6个小生境超过100%;农田科的变异系数有1个小生境超过100%;草地的属和科变异系数均是1个小生境超过100%;灌丛则全部低于100%。这些数值,反映了三峡库区的形成对蝴蝶的生存及分布的产生了很大的影响,进一步证明库区蝶类生存环境的多样性和破碎化;其中,森林对蝴蝶生存的影响是最复杂的;通过蝴蝶做环境质量评估时,灌丛可作为首选考察对象。  相似文献   

15.
Aim A better understanding of the processes driving local species richness and of the scales at which they operate is crucial for conserving biodiversity in cultivated landscapes. Local species richness may be controlled by ecological processes acting at larger spatial scales. Very little is known about the effect of landscape variables on soil biota. The aim of our study was to partly fill this gap by relating the local variation of surface‐dwelling macroarthropod species richness to factors operating at the habitat scale (i.e. land use and habitat characteristics) and the landscape scale (i.e. composition of the surrounding matrix). Location An agricultural landscape with a low‐input farming system in Central Hesse, Germany. Methods We focused on five taxa significantly differing in mobility and ecological requirements: ants, ground beetles, rove beetles, woodlice, and millipedes. Animals were caught with pitfall traps in fields of different land use (arable land, grassland, fallow land) and different habitat conditions (insolation, soil humidity). Composition of the surrounding landscape was analysed within a radius of 250 m around the fields. Results Factors from both scales together explained a large amount of the local variation in species richness, but the explanatory strength of the factors differed significantly among taxa. Land use particularly affected ground beetles and woodlice, whereas ants and rove beetles were more strongly affected by habitat characteristics, namely by insolation and soil characteristics. Local species richness of diplopods depended almost entirely on the surrounding landscape. In general, the composition of the neighbouring landscape had a lower impact on the species richness of most soil macroarthropod taxa than did land use and habitat characteristics. Main conclusions We conclude that agri‐environment schemes for the conservation of biodiversity in cultivated landscapes have to secure management for both habitat quality and heterogeneous landscape mosaics.  相似文献   

16.
The Influence of Landscape Grain Size on Butterfly Diversity in Grasslands   总被引:6,自引:0,他引:6  
The relationship between butterfly diversity and both habitat and landscape variables was studied in two areas of southern Sweden. The habitat quality of the grasslands was similar in the two study areas but the landscape pattern differed in grain size and amount of grassland and forest. Using a transect survey method, a total of 3341 butterflies were observed and 30 taxa identified. We found that both habitat and landscape variables influenced the butterfly diversity of the investigated grasslands. Species composition differed markedly between the two study areas. A study area with a fine-grained landscape pattern, a high cover of semi-natural grassland and many forest edges had twice as many butterfly species but half the number of individuals compared with a coarser-grained study area with larger grasslands widely spread in a matrix of arable fields. The results of our study indicate that both habitat quality and landscape pattern have to be considered when developing conservation strategies for grassland butterflies.  相似文献   

17.
Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity.  相似文献   

18.
It has been suggested that biodiversity in agroecosystems depends on both landscape heterogeneity and farm management, but at the same time, studies of biodiversity in relation to both landscape variables and farm management are rare. We investigated the species richness of plants, butterflies, carabids, rove beetles and the diversity of spiders in cereal fields, leys (grass and clover crop) and semi-natural pastures at 16 farms in Central East Sweden. The farms were divided into eight pairs of one conventional and one organic farm to enable us to separate the effects of landscape and farm management on biodiversity. The pairing was based on land use, location, and landscape features. Species richness of different taxonomic groups was generally not correlated. There were no differences in species richness between the farming systems, except for carabids that had higher numbers of species on conventional farms. The species richness generally increased with landscape heterogeneity on a farm scale. Habitat type had a major effect on the species richness for most groups, with most species found in pastures and leys. The correlations between species richness and landscape variables on a farm scale, and not on a scale of multiple farms, identify farmers as the important decision-maker in conservation issues for these taxonomic groups. We discuss the role of species richness of pests' natural enemies for biological control and conservation strategies of the more common species in the agricultural landscape.  相似文献   

19.
Nowadays 37% of Earth’s ice-free land is composed by fragments of natural habitats settled in anthropogenic biomes. Therefore, we have to improve our knowledge about distribution of organisms in remnants and to understand how the matrix affects these distributions. In this way, the present study aims to describe the structure of the butterfly assemblages and determined how richness and abundance are influenced by the scale of the surrounding vegetation. General linear models were used to investigate how the type and scale of vegetation cover within a radius of 100–2,000 m around the sampling point explained butterfly diversity. After sampling ten forest fragments we found 6,488 individuals of 73 species. For all clades tested null models explain the species richness at the fragments better than other models when we include the effect of butterfly abundance as a covariate. Abundance of Satyrini, Brassolini, and Biblidinae were best predicted by small scales (100–200 m), and large scales were more suited for Charaxinae. The presence of pasture best explains the abundance of all groups except Charaxinae, which was best explained by early-regrowth forest. The abundance of different species and groups are correlated with different kinds of vegetation cover. However, we demonstrate that small scales (100–200 m) are more effective at explaining the abundance of most butterflies. These results strongly suggest that efforts to preserve insect diversity in forest fragments should take in account the immediate surroundings of the fragment, and not only the regional landscape as a whole. In general, actions of people living near forest fragments are as important to fruit-feeding butterflies as large scale actions are, with the former being seldom specified in management plans or conservation policies.  相似文献   

20.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号