首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

2.
3.
Most studies of morphological variability in or among species are performed on adult specimens. However, it has been proven that knowledge of the patterns of size and shape changes and their covariation during ontogeny is of great value for the understanding of the processes that produce morphological variation. In this study, we investigated the patterns of sexual dimorphism, phylogenetic variability, and ontogenetic allometry in the Spermophilus citellus with geometric morphometrics applied to cross-sectional ontogenetic data of 189 skulls from three populations (originating from Burgenland, Banat, and Dojran) belonging to two phylogenetic lineages (the Northern and Southern). Our results indicate that sexual dimorphism in the ventral cranium of S. citellus is expressed only in skull size and becomes apparent just before or after the first hibernation because of accelerated growth in juvenile males. Sexes had the same pattern of ontogenetic allometry. Populations from Banat and Dojran, belonging to different phylogroups, were the most different in size but had the most similar adult skull shape. Phylogenetic relations among populations, therefore, did not reflect skull morphology, which is probably under a significant influence of ecological factors. Populations had parallel allometric trajectories, indicating that alterations in development probably occur prenatally. The species’ allometric relations during cranial growth showed characteristic nonlinear trajectories in the two northern populations, with accelerated shape changes in juveniles and continued but almost isometric growth in adults. The adult cranial shape was reached before sexual maturity of both sexes and adult size after sexual maturity. The majority of shape changes during growth are probably correlated with the shift from a liquid to a solid diet and to a lesser degree due to allometric scaling, which explained only 20 % of total shape variation. As expected, viscerocranial components grew with positive and neurocranial with negative allometry.  相似文献   

4.
The degree to which the ontogeny of organisms could facilitate our understanding of phylogenetic relationships has long been a subject of contention in evolutionary biology. The famed notion that ‘ontogeny recapitulates phylogeny’ has been largely discredited, but there remains an expectation that closely related organisms undergo similar morphological transformations throughout ontogeny. To test this assumption, we used three‐dimensional geometric morphometric methods to characterize the cranial morphology of 10 extant crocodylian species and construct allometric trajectories that model the post‐natal ontogenetic shape changes. Using time‐calibrated molecular and morphological trees, we employed a suite of comparative phylogenetic methods to assess the extent of phylogenetic signal in these trajectories. All analyses largely demonstrated a lack of significant phylogenetic signal, indicating that ontogenetic shape changes contain little phylogenetic information. Notably, some Mantel tests yielded marginally significant results when analysed with the morphological tree, which suggest that the underlying signal in these trajectories is correlated with similarities in the adult cranial morphology. However, despite these instances, all other analyses, including more powerful tests for phylogenetic signal, recovered statistical and visual evidence against the assumption that similarities in ontogenetic shape changes are commensurate with phylogenetic relatedness and thus bring into question the efficacy of using allometric trajectories for phylogenetic inference.  相似文献   

5.
The Antarctic fish family Nototheniidae (Perciformes) presumably originated from a benthic ancestor, and several lineages have evolved to live or at least feed in the water column, a trend called pelagization. Here, we use information on phylogeny, allometric growth, and diet composition for an integrated analysis of morphological and ecological diversification in this group, mainly focusing on the subfamilies Trematominae and Pleuragramminae. A phylogenetic analysis of data published in earlier systematic studies produced eight equally parsimonious trees, all indicating that several previously recognized taxa are paraphyletic. These phylogenetic trees all suggest multiple origins of pelagic life styles. Multivariate morphometric analyses including nine species showed that juveniles and adults grow according to a common pattern of ontogenetic allometry. The morphometric differences among species are mosdy the result of lateral transpositions of the growth trajectories, indicating that embryonic and larval development is more important as a determinant of morphological variation than allometric growth as juveniles and adults. We studied patterns of interspecific variation with principal components and the covariation between morphometric variables and food composition with a partial least-squares analysis. Both analyses revealed a gradient from benthic to pelagic foragers. Measurements of structures involved in swimming have a prominent role in these analyses, suggesting adaptive evolution of these traits. Tracing morphometric traits on the phylogenetic trees revealed a considerable amount of evolutionary plasticity, showing that species related phylogenetically need not be morphologically similar, but can diverge considerably, perhaps as a response to natural selection and adaptation to different habitats and foraging modes. In accordance, a test of phylogenetically independent contrasts showed that bursts of increased morphological change accompanied habitat shifts.  相似文献   

6.
Post-natal ontogenetic variation of the marmot mandible and ventral cranium is investigated in two species of the subgenus Petromarmota (M. caligata, M. flaviventris) and four species of the subgenus Marmota (M. caudata, M. himalayana, M. marmota, M. monax). Relationships between size and shape are analysed using geometric morphometric techniques. Sexual dimorphism is negligible, allometry explains the main changes in shape during growth, and males and females manifest similar allometric trajectories. Anatomical regions affected by size-related shape variation are similar in different species, but allometric trajectories are divergent. The largest modifications of the mandible and ventral cranium occur in regions directly involved in the mechanics of mastication. Relative to other anatomical regions, the size of areas of muscle insertion increases, while the size of sense organs, nerves and teeth generally decreases. Epigenetic factors, developmental constraints and size variation were found to be the major contributors in producing the observed allometric patterns. A phylogenetic signal was not evident in the comparison of allometric trajectories, but traits that allow discrimination of the Palaearctic marmots from the Nearctic species of Petromarmota are present early in development and are conserved during post-natal ontogeny.  相似文献   

7.
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.  相似文献   

8.
Recent advances in developmental biology reveal that patterns of morphological development, even during early phases, may be highly susceptible to evolutionary change. Consequently, developmental data may be uninformative with regard to distinguishing homology and homoplasy. The present analysis evaluates postnatal ontogeny in papionin primates to test hypotheses about homology and homoplasy during later periods of development. Specifically, the analysis studies the allometric bases of craniometric resemblances among four papionin genera to test the hypothesis that homoplasy in adult cranial form, particularly of baboons (Papio) and mandrills (Mandrillus), is underwritten by divergent patterns of development. Bivariate and multivariate allometric analyses demonstrate that the developmental patterns in Papio baboons diverge markedly from ontogenetic allometric trajectories in other papionin species. The resemblances between Papio and Mandrillus (assuming that patterns of development in smaller papionins are ancestral) are largely consequences of perinatal increases in relative brain size in juvenile Papio. Postnatal growth to large size and strong negative allometry of neurocranial form results in shape similarities because developmental pathways for large papionin genera intersect. Analyses show that allometric data may not be particularly informative in revealing homoplasy. However, placed into proper phylogenetic context, such data illustrate derived patterns of development that may reflect critically important life-history or ontogenetic adaptations.  相似文献   

9.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The relationship between ontogenetic, static, and evolutionary levels of allometry is investigated. Extrapolation from relative size relationships in adults to relative growth in ontogeny depends on the variability of slopes and intercepts of ontogenetic vectors relative to variability in length of the vector. If variability in slopes and intercepts is low relative to variability in length, ontogenetic and static allometries will be similar. The similarity of ontogenetic and static allometries was tested by comparing the first principal component, or size vector, for correlations among 48 cranial traits in a cross-sectional ontogenetic sample of rhesus macaques from Cayo Santiago with a static sample from which all age- and sex-related variation had been removed. The vector correlation between the components is high but significantly less than one while two of three allometric patterns apparent in the ontogenetic component are not discernable in the static component. This indicates that there are important differences in size and shape relationships among adults and within ontogenies. Extrapolation from intra- or interspecific phenotypic allometry to evolutionary allometry is shown to depend on the similarity of genetic and phenotypic allometry patterns. Similarity of patterns was tested by comparing the first principal components of the phenotypic, genetic, and environmental correlation matrices calculated using standard quantitative genetic methods. The patterns of phenotypic, genetic, and environmental allometry are dissimilar; only the environmental allometries show ontogenetic allometric patterns. This indicates that phenotypic allometry may not be an accurate guide to patterns of evolutionary change in size and shape.  相似文献   

11.
As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species: Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive allometric growth of skull elements related to foraging.  相似文献   

12.
13.
Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species‐rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well‐adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes.  相似文献   

14.
Traditional classifications of the Old World monkey tribe Papionini (Primates: Cercopithecinae) recognized the mangabey genera Cercocebus and Lophocebus as sister taxa. However, molecular studies have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other papionins. Recent studies have identified cranial and postcranial features which distinguish the Cercocebus-Mandrillus clade, however the detailed similarities in cranial shape between the mangabey genera are more difficult to reconcile with the molecular evidence. Given the large size differential between members of the papionin molecular clades, it has frequently been suggested that allometric effects account for homoplasy in papionin cranial form. A combination of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development.Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differences in regression lines also were noted. In particular, Cercocebus and Lophocebus exhibit a shared slope and significant vertical displacement of their allometric lines relative to other papionins. These findings give no support to narrowly construed hypotheses of uniquely shared patterns of allometric scaling, either between sister taxa or across all papionins. However, more general allometric trends do appear to account for a substantial proportion of papionin cranial shape variation, most notably in those features which have influenced traditional morphological phylogenies. Examination of size-uncorrelated shape variation gives no clear support to molecular phylogenies, but underscores the absence of morphometric similarities between the mangabey genera when size effects are controlled. Patterns of allometric and size-uncorrelated shape variation indicate conservatism of cranial form in non- Theropithecus papionins, and suggest that Papio represents the primitive morphometric pattern for the African papionins. Lophocebus exhibits a divergent morphometric pattern, clearly distinguishable from other papionins, most notably Cercocebus. These results clarify patterns of cranial shape variation among the extant Papionini and lay the groundwork for studies of related fossil taxa.  相似文献   

15.
The ontogeny of the skull has been studied in several marsupial groups such as didelphids, microbiotheriids, and dasyurids. Here, we describe and compare the post-weaning ontogeny of the skull in two species of bandicoots, Echymipera kalubu (Echymiperinae) and Isoodon macrourus (Peramelinae), analyzing specific allometric trends in both groups, describing common (and specific) patterns, and discussing them on functional and phylogenetic grounds. Growth patterns were analyzed both qualitatively and quantitatively, including bivariate and multivariate analyses of allometry. We also evaluated character transformation and phylogenetic signals of the allometric patterns in several groups of marsupials and some placentals. We identified morphological changes between juvenile and adult stages in both species of peramelids, many related to the development of the trophic apparatus. Notable differences were detected in the patterns of growth, suggesting divergences in ontogenetic trajectories between both species. Both bivariate and multivariate methods indicate that positive allometries in E. kalubu apply to longitudinal dimensions, whereas in I. macrourus, positive allometries are restricted to vertical dimensions of the skull. The comparison of the allometric trends of two bandicoots with previously studied taxa reveals that although peramelids exhibit a particularly short gestation period and divergent morphology compared to other marsupials, their pattern does not show any particular trend. Some allometric trends seem to be highly conserved among the species studied, showing weak phylogenetic signal. Marsupials in general do not show particular patterns of post-weaning skull growth compared with placentals.  相似文献   

16.
Analysis of ontogenetic development is crucial for understanding the emergence of phenotypic discrepancies between animal taxa. The study of allometric trajectories within a phylogenetic context is a feasible approach to assess the morphological change across different evolutionary lineages. Here, we report the disparity of multivariate ontogenetic allometry in the Echimyidae, a taxonomically diverse rodent family, as well as the effects of size on the evolution of skull ontogeny. The ontogenetic trajectories of 15 echimyid operational taxonomic unities (12 genera plus one genus with three species) belonging to all subfamilies and major clades, when plotted in allometric space, revealed strong and significant phylogenetic signals. Allometric trajectories were found to be constrained by phylogenetic ancestry, with changes approximately adjusting to a Brownian motion model of evolution. Moreover, the occupation of allometric space by echimyid taxa was significantly correlated with adult size rather than with shape, suggesting that the variation in adult size might result in critically intrinsic and structural constraints on allometric coefficients. These findings disagreed with the hypothesis that allometric disparities might be mainly adaptive with undetectable phylogenetic signals.  相似文献   

17.
Quantification of mammalian skull development has received much attention in the recent literature. Previous results in different lineages have shown an effect of historical legacy on patterns of skull growth. In marsupials, the skull of adults exhibits high variation across species, principally along a size axis. The development keys of the marsupial skull are fundamental to understanding the evolution of skull function in this clade. Its generally well-resolved phylogeny makes the group ideal for studying macroevolution of skull ontogeny. Here, we tested the hypothesis that ontogenetic similarity is correlated with phylogeny in New World marsupials, so that developmental patterns are expected to be conserved from ancestral opossums. We concatenated our previously published ontogenetic cranial data from several opossum species with new ontogenetic sequences and constructed an allometric space on the basis of a set of comparable cranial linear measurements. In this ontogenetic space, we determined the degree of correspondence of developmental patterns and the phylogeny of the group. In addition, we mapped ontogenetic trajectories onto the opossum phylogeny, treating the trajectories as composite, continuously varying characters. Didelphids differed widely in the magnitude of skull allometry across species. Splanchnocranial components exhibited all possible patterns of inter-specific variation, whereas mandibular variables were predominantly allometrically “positive” and neurocranial components were predominantly allometrically “negative.” The distribution of species in allometric space reflected the compounded effect of phylogeny and size variation characteristic of didelphids. The terminal morphology of related species differed in shape, so their ontogenetic trajectories deviated with respect to that of reconstructed common ancestors in varying degree. Phylogeny was the main factor structuring the allometric space of New World marsupials. Didelphids inherited an ancestral constellation of allometry coefficients without change and retained much of it throughout their lineage history. Conserved allometric values on the nodes splitting placental outgroups and marsupials suggest a developmental basis common to all therians.  相似文献   

18.
Garriga, N. and Llorente, G.A. 2011. Chondrocranial Ontogeny of Pelodytes punctatus (Anura: Pelodytidae). Response to competition: Geometric Morphometric and Allometric Change Analysis. —Acta Zoologica (Stockholm) 93 : 453–464. The chondrocranial development of Pelodytes punctatus is described, from tadpole to froglet, and compared with that of other taxa reported previously, such as species in the Pelobatidae, Pipidae, Ranidae, Hylidae, Bombinatoridae, Leptodactylidae, or Microhylidae families. The comparison leads us to suggest that the ontogeny of the anuran chondrocranium is very conservative, making it difficult to discern phylogenetic or ecologic patterns. Chondrocranial development is also analyzed to quantify shape changes and allometries during ontogeny, using linear and geometric morphometrics. The main shape change observed follows the general pattern of vertebrate postnatal development. The allometric analysis indicates the presence of different functional units in the chondrocranium that could be subjected to different pressures. Finally, tadpoles were raised in two conditions of competition to compare their chondrocranium development. The largest shape differences between the two conditions are located in the anterior region of the cranium and fit the general response to competition stress by increasing growth rate. Comparison of the scaling pattern between Pelodytes and Rana sylvatica and Bufo americanus shows differences, principally in the oral region, that do not fit with the general allometric pattern in larval anurans proposed in previous studies.  相似文献   

19.
Phenotypic convergence has confounded evolutionary biologists for centuries, explained as adaptations to shared selective pressures, or alternatively, the result of limited developmental pathways. We tested the relative roles of adaptation and constraint in generating convergent cranial morphologies across a large lizard radiation, the Lacertidae, whose members inhabit diverse environments throughout the Old World and display high amounts of homoplasy associated with ecological niche. Using 3D X‐ray computed tomography, we quantified cranial shape variation associated with ontogeny, allometry, and ecology, covering all lacertid genera and one‐third of species diversity. Landmark‐based geometric morphometrics showed that cranial shape varied significantly among biomes, with substantial convergence among arid‐dwelling lineages. Comparisons of species cranial growth trajectories between biomes revealed that allometric postdisplacement, as evidenced by decreased elevation of a constant ontogenetic slope, drives the convergent paedomorphic appearance of independent arid‐dwelling forms. We hypothesize that observed heterochronic changes reflect temporal compression of ancestral life history in response to extreme environments, with associated phenotypes occurring as by‐products of adaptive shifts in reproductive investment. Although allometry has long been considered a developmental constraint, our results demonstrate that allometric flexibility during early ontogeny produces convergent ecomorphologies over vast temporal and spatial scales, thus dramatically obscuring underlying phylogenetic signals.  相似文献   

20.

Background

How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera.

Results

Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories.

Conclusion

The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号