首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

2.
Uptake of taurine in human placental brush-border membrane vesicles was greatly stimulated in the presence of an inwardly-directed Na+ + Cl- -gradient and uphill transport of taurine could be demonstrated under these conditions. Na+ as well as Cl- were obligatory for this uptake and both ion gradients could energize the uphill transport. This Na+ + Cl- -gradient-dependent taurine uptake was stimulated by an inside-negative membrane potential, demonstrating the electrogenicity of the process. The uptake system was highly specific for beta-amino acids and the Km of the system for taurine was 6.5 +/- 0.4 microM.  相似文献   

3.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

4.
Iodipamide, a cholecystographic agent, is known to be taken up by isolated hepatocytes by a mechanism similar or identical with the inward transport of bile salts (Petzinger, E., Joppen, C. and Frimmer, M. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 174-179). To elucidate its mode of transport, uptake of iodipamide was studied by rapid-filtration techniques on plasma membrane vesicles enriched in the sinusoidal fraction. Uptake was found to be dependent upon the temperature, the intravesicular volume, a gradient of monovalent cations (Na+, K+ or Li+) and the substrate concentration (saturation kinetics with respect to iodipamide: apparent Km = 70 microM, Vmax = 0.31 nmol per mg protein per min at 100 mM NaCl and 25 degrees C). Countertransport and transstimulation in tracer exchange experiments indicate that in vesicles, iodipamide uptake rather than binding occurs. Na+ could be replaced by K+ or Li+ in our system without any effect. However, in the presence of choline chloride a slight, but distinct reduction occurred. Iodipamide uptake was inhibited by cholate, phalloidin, 4,4'-diisothiocyanato-1,2-diphenylethane-2,2'-disulfonic acid and by bromosulfophthalein with inhibition being competitive in the case of cholate and non-competitive in the case of bromosulfophthalein. Alteration of the membrane potential by addition of NO3-, SCN- or SO4(2-) modified the uptake rate for iodipamide. The above results support our earlier hypothesis that the hepatocellular uptake of iodipamide is due to a carrier-mediated transport, probably similar to that of bile acids. However, translocation of iodipamide is assumed to be driven by the membrane potential only and not by Na+ contransport.  相似文献   

5.
Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of [3H]serotonin had a Na+-dependent and Na+-independent component. The Na+-dependent uptake was inhibited by classical blockers of serotonin uptake and had a Km of 63-180 nM, and a Vmax of 0.1-0.3 pmol mg-1 s-1 at 77 mM Na+. The uptake required the presence of external Na+ and internal K+. It required a Na+ gradient ([Na+]out greater than [Na+]in) and was stimulated by a gradient of K+ ([K+]in greater than [K+]out). Replacement of Cl- by other anions (NO2-, S2O3-(2-)) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN- ion in the absence of internal K+ and with equal [Na+] inside and outside. The increase of uptake as a function of [Na+] indicated a Km for Na+ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport (Nelson, P. J., and Rudnick, G. (1979) J. Biol. Chem. 254, 10084-10089), except for the number of sodium ions that are required for transport.  相似文献   

6.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

7.
Walczak HA  Dean JV 《Phytochemistry》2000,53(4):441-446
Red beet (Beta vulgaris L.) tonoplast membrane vesicles and [14C]trans-cinnamic acid-glutatione were used to study the vacuolar transport of phynylpropanoid-glutathione conjugates which are formed in peroxidase-mediated reactions. It was determined that the uptake of [14C]trans-cinnamic acid-glutathione into the tonoplast membrane vesicles was MgATP dependent and was 10-fold faster than the uptake of non-conjugated [14C]trans-cinnamic acid. Uptake of the conjugate in the presence of MgATP was not dependent on a trans-tonoblast H+-electrochemical gradient, because uptake was not affected by the addition of NH4Cl (1 mM; 0% inhibition) and was only slightly affected by gramicidin-D (5 microM; 14% inhibition). Uptake of the conjugate was inhibited 92% by the addition of vanadate (1 mM) and 71% by the addition of the model substrate S-(2,4-dinitrophenyl) glutathione (500 microM). Uptake did not occur when a nonhydrolyzable analog of ATP was used in place of MgATP. The calculated Km and Vmax values for uptake were 142 microM amd 5.95 nmol mg(-1) min(-1), respectively. Based on these results, phenylpropanoid-glutation conjugates formed in peroxidase-mediated reactions appear to be transported into the vacuole by the glutathione S-conjugate pump(s) located in the tonoplast membrane.  相似文献   

8.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

9.
To elucidate the mechanism of taurine transport across the hepatic plasma membranes, rat liver sinusoidal plasma membrane vesicles were isolated and the transport process was analyzed. In the presence of a sodium gradient across the membranes (vesicle inside less than vesicle outside), an overshooting uptake of taurine occurred. In the presence of other ion gradients (K+, Li+, and choline+), taurine uptake was very small and no such overshoot was observed. Sodium-dependent uptake of taurine occurred into an osmotically active intravesicular space. Taurine uptake was stimulated by preloading vesicles with unlabeled taurine (transstimulation) in the presence of NaCl, but not in the presence of KCl. Sodium-dependent transport followed saturation kinetics with respect to taurine concentration; double-reciprocal plots of uptake versus taurine concentration gave a straight line from which an apparent Km value of 0.38 mM and Vmax of 0.27 nmol/20 s x mg of protein were obtained. Valinomycin-induced K+-diffusion potential failed to enhance the rate of taurine uptake, suggesting that taurine transport does not depend on membrane potential. Taurine transport was inhibited by structurally related omega-amino acids, such as beta-alanine and gamma-aminobutyric acid, but not by glycine, epsilon-aminocaproic acid, or other alpha-amino acids, such as L-alanine. These results suggest that Na+-dependent uptake of taurine might occur across the hepatic sinusoidal plasma membranes via a transport system that is specific for omega-amino acids having 2-3 carbon chain length.  相似文献   

10.
D-Glucose transport was studied with isolated brush border membrane vesicles from guinea pig jejunum. Saturation curves were carried out at either 25 or 35 degrees C in buffers containing Na+, Li+, K+ (100 mM chloride salt), or sorbitol (200 mM). Uncorrected uptake rates were fitted by nonlinear regression analysis to an equation involving one diffusional and two saturable terms. In the presence of Na+ at 35 degrees C, two saturable systems (Km = 0.4 and 24 mM, respectively) were evident, as well as a diffusion component quantitatively identical with that measured with L-glucose in separate experiments. In contrast, at 25 degrees C only one saturable system was apparent (Km = 1.2 mM): the second exhibited diffusion-like kinetics. In the presence of Na+ at 35 degrees C, D-glucose uptake was fully inhibited by both D-glucose and D-galactose, whereas alpha-methylglucoside gave kinetics of partial inhibition. We conclude that in the presence of Na+ there are at least two distinct D-glucose transport systems: 1) System I, a low temperature-sensitive system, fully inhibited by D-glucose, D-galactose, and alpha-methylglucoside; we identify it as the "classical" D-glucose/Na+ cotransport system, insensitive to inhibition by cytochalasin B and obligatorily dependent on Na+; and 2) System II, a high temperature-sensitive system where D-glucose and D-galactose inhibit but alpha-methylglucoside is inert. Its cation specificity is unclear but it appears to be sensitive to cytochalasin B inhibition. When Li+ or K+ substituted for Na+, only one transport system was apparent. The Li+-activated transport was: independent of the incubation temperature; inhibited by D-glucose and D-galactose but not by alpha-methylglucoside, 2-deoxy-D-glucose, D-mannose, and D-xylose; and sensitive to cytochalasin B inhibition. The exact nature of the system (or systems) involved in D-glucose transport in the absence of sodium remains to be established.  相似文献   

11.
Cellular uptake of the cholephilic organic anion sulphobromophthalein (BSP) by the human biliary epithelium carcinoma cell line Sk-Cha-1 was examined at 37 degrees C. In confluent monolayer cultures the cellular influx rate of increasing concentrations of [35S]BSP followed saturation kinetics with a Km value of 18 microM and a Vmax value of 243 pmol.min-1.mg protein-1. Uptake of [35S]BSP was competitively inhibited by the presence of bilirubin diglucuronide, but not by taurocholate or cholate. Furthermore, uptake was temperature dependent with maximal cellular influx rates at 37 degrees C.  相似文献   

12.
Tissue slices of shark rectal gland are studied to examine the kinetics of the cellular fluxes of taurine, a major intracellular osmolyte in this organ. Maintenance of high steady-state cell taurine (50 mM) is achieved by a ouabain-sensitive active Na+-dependent uptake process and a relatively slow efflux. Uptake kinetics are described by two saturable taurine transport components (high-affinity, Km 60 microM; and low-affinity, Km 9 mM). [14C]Taurine uptake is enhanced by external Cl-, inhibited by beta-alanine and unaffected by inhibitors of the Na+/K+/2Cl- co-transport system. Two cellular efflux components of taurine are documented. Incubation of slices in p-chloromercuribenzene sulfonate (1 mM) reduces taurine uptake, increases efflux of taurine and induces cell swelling. Studies of efflux in isotonic media with various cation and anion substitutions demonstrate that high-K+ markedly enhances taurine efflux irrespective of cell volume changes (i.e. membrane stretching is not involved). Moreover, iso-osmotic cell swelling induced in media containing propionate is not associated with enhanced efflux of taurine from the cells. It is suggested that external K+ exerts a specific effect on the cytoplasmic membrane to increase its permeability to taurine.  相似文献   

13.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

14.
ATP-dependent Cl- uptake by plasma membrane vesicles from the rat brain   总被引:1,自引:0,他引:1  
Uptake of Cl- by plasma membrane vesicles from the rat brain was stimulated by ATP at 37 degrees C, but not by beta, gamma-methylene ATP or at 0 degrees C. The addition of Triton X-100 or sucrose to the incubation medium diminished the ATP-stimulated Cl- uptake, suggesting that Cl- was transported across the membranes into the intravesicular space. This ATP-stimulated Cl- uptake was not affected by 1 mM ouabain. 1 microM oligomycin, 0.1 mM gamma-aminobutyric acid or 0.1 mM picrotoxin. Thus, non-mitochondrial ATP-driven Cl- transport through a system other than Na, K-ATPase or Cl- channels occurs in neuronal plasma membrane vesicles.  相似文献   

15.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

16.
Induced glutarate and 2-oxoglutarate uptake and transport by Pseudomonas putida were investigated in whole cells and membrane vesicles, respectively. Uptake of 2-oxoglutarate, but not glutarate, was against a concentration gradient to 1.7-fold greater than the initial extracellular concentration. Membrane vesicles transported 2-oxoglutarate and glutarate against gradients to intramembrane concentrations fivefold greater than the initial extravesicle concentrations. The rates of transport of both compounds were greatest in the presence of the artificial electron donor system phenazine methosulfate-ascorbate. Malate and D-lactate were the only naturally occurring compounds that served as electron donors. Uptake and transport were inhibited by KCN, NaN3, and 2,2-dinitrophenol. Kinetic parameters of transport were: glutarate, apparent Km--1.22 mM, Vmax--400 nmol/min per mg of membrane protein; 2-oxoglutarate, apparent Km--131 microM, Vmax--255 nmol/min per mg of membrane protein. Studies of competitive inhibition indicated a common system for transport of five C5 dicarboxylate compounds. The apparent Km and Ki values with 2-oxoglutarate as a substrate placed the substrate affinity for transport in the order 2-oxoglutarate greater than glutarate greater than D-2-hydroxyglutarate and L-2-hydroxyglutarate greater than glutaconate.  相似文献   

17.
Pantothenic acid transport was studied in the isolated perfused rat heart and isolated sheep cardiac sarcolemmal vesicles. In the perfused heart, pantothenic acid transport was significantly greater if hearts were perfused as working hearts rather than Langendorff hearts, but was unaffected by the perfusion substrates used (11 mM glucose or 1.2 mM palmitate). Uptake rates of pantothenic acid in working hearts are dependent on perfusate concentrations of pantothenic acid (a Vmax of 418 nmol/g dry weight/30 min and a Km for pantothenic acid of 10.7 mircoM were obtained). Reduction in perfusate Na+ concentration from 145 to 105 mM (the Na+ was replaced with 40 mM choline) resulted in a small but significant decrease in pantothenic acid uptake. At 145 mM Na+, addition of a mixture of amino acids, whose uptake is Na+-dependent, resulted in a significant decrease in pantothenic acid uptake by the heart (173 +/- 5 to 132 +/- 12 nmol/g dry weight). If an inward Na+ gradient in isolated, purified sarcolemmal vesicles, was imposed, a rapid uptake of pantothenic acid was observed. Uptake rates are markedly reduced if Na+ was replaced by equimolar concentrations of K+ or if external Na+ was reduced below 40 mM. In the presence of Na+, increasing pantothenic acid concentrations resulted in an increase in pantothenic acid uptake by the vesicles. Combined, these data demonstrate that pantothenic acid is transported across the myocardial sarcolemmal membrane by a Na+-dependent mechanism, which may be common to a number of small molecules.  相似文献   

18.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

19.
Ca2+ was accumulated by right-side-out membrane vesicles of Bacillus subtilis following imposition of a diffusion potential, inside-negative, owing to K+-efflux via valinomycin. Uptake was dependent on the magnitude of the membrane potential. This voltage-dependent Ca2+ uptake was inhibited by Ca2+ channel blockers such as nitrendipine, verapamil and LaCl3, and was competitively inhibited by Ba2+ and Sr2+. The system showed saturation kinetics with an apparent Km for Ca2+ of about 250 microM. Proteins responsible for the voltage-dependent Ca2+ uptake were partially purified by preparative isoelectric focusing in a Sepharose bed. A fraction at pH 5.28-5.33 contained the activity. The characteristics of Ca2+ uptake in reconstituted proteoliposomes were the same as those in membrane vesicles (sensitive to Ca2+ channel blockers; inhibited by Ba2+ and Sr2+). In addition, uptake was not influenced by a pH gradient imposed on the vesicles. The apparent Km for Ca2+ in the reconstituted system was about 260 microM. The specific activity was increased about 50-fold by purification with isoelectric focusing.  相似文献   

20.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号