首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

3.
We have examined the ability of epidermal growth factor (EGF)-stimulated ERK activation to regulate Grb2-associated binder-1 (Gab1)/phosphatidylinositol 3-kinase (PI3K) interactions. Inhibiting ERK activation with the MEK inhibitor U0126 increased the EGF-stimulated association of Gab1 with either full-length glutathione S-transferase-p85 or the p85 C-terminal Src homology 2 (SH2) domain, a result reproduced by co-immunoprecipitation of the native proteins from intact cells. This increased association of Gab1 and the PI3K correlates with an increase in PI3K activity and greater phosphorylation of Akt. This result is in direct contrast to what we have previously reported following HGF stimulation where MEK inhibition decreased the HGF-stimulated association of Gab1 and p85. In support of this divergent effect of ERK on Gab1/PI3K association following HGF and EGF stimulation, U0126 decreased the HGF-stimulated association of p85 and the Gab1 c-Met binding domain but did not alter the EGF-stimulated association of p85 and the c-Met binding domain. An examination of the mechanism of this effect revealed that the treatment of cells with EGF + U0126 increased the tyrosine phosphorylation of Gab1 as well as its association with another SH2-containing protein, SHP2. Furthermore, overexpression of a catalytically inactive form of SHP2 or pretreatment with pervanadate markedly increased EGF-stimulated Gab1 tyrosine phosphorylation. These experiments demonstrate that EGF and HGF-mediated ERK activation result in divergent effects on Gab1/PI3K signaling. HGF-stimulated ERK activation increases the Gab1/PI3K association, whereas EGF-stimulated ERK activation results in a decrease in the tyrosine phosphorylation of Gab1 and a decreased association with the PI3K. SHP2 is shown to associate with and dephosphorylate Gab1, suggesting that EGF-stimulated ERK might act through the regulation of SHP2.  相似文献   

4.
Scaffolding adapter Grb2-associated binder 2 (Gab2) is a key component of FcepsilonRI signaling in mast cells, required for the activation of PI3K. To understand how Gab2 is activated in FcepsilonRI signaling, we asked which protein tyrosine kinase is required for Gab2 phosphorylation. We found that Gab2 tyrosyl phosphorylation requires Lyn and Syk. In agreement with published results, we found that Fyn also contributes to Gab2 tyrosyl phosphorylation. However, Syk activation is defective in Fyn(-/-) mast cells, suggesting that Syk is the proximal kinase responsible for Gab2 tyrosyl phosphorylation. Then, we asked which domains in Gab2 are required for Gab2 tyrosyl phosphorylation. We found that the Grb2-Src homology 3 (SH3) binding sites are required for, whereas the pleckstrin homology (PH) domain contributes to, Gab2 tyrosyl phosphorylation. Using a protein/lipid overlay assay, we determined that the Gab2 PH domain preferentially binds the PI3K lipid products, PI3, 4,5P3 and PI3, 4P2. Furthermore, the Grb2-SH3 binding sites and PH domain binding to PI3K lipid products are required for Gab2 function in FcepsilonRI-evoked degranulation and Akt activation. Our data strongly suggest a model for Gab2 action in FcepsilonRI signaling. The Grb2 SH3 binding sites play a critical role in bringing Gab2 to FcepsilonRI, whereupon Gab2 becomes tyrosyl-phosphorylated in a Syk-dependent fashion. Phosphorylated Gab2 results in recruitment and activation of PI3K, whose lipid products bind the PH domain of Gab2 and acts in positive feedback loop for sustained PI3K recruitment and phosphatidylinositol-3,4,5-trisphosphate production, required for FcepsilonRI-evoked degranulation of mast cells.  相似文献   

5.
Gab1-SHP2 association is required for Erk mitogen-activated protein kinase activation by several growth factors. Gab1-SHP2 interaction activates SHP2. However, an activated SHP2 still needs to associate with Gab1 to mediate Erk activation. It was unclear whether SHP2 is required to dephosphorylate a negative phosphorylation site on Gab1 or whether SHP2 needs the Gab1 pleckstrin homology (PH) domain to target it to the plasma membrane. We found that expression of a fusion protein consisting of the Gab1 PH domain and an active SHP2 (Gab1PH-SHP2DeltaN) induced constitutive Mek1 and Erk2 activation. Linking the active SHP2DeltaN to the PDK1 PH domain or the FRS2beta myristoylation sequence also induced Mek1 activation. Mek1 activation by Gab1PH-SHP2DeltaN was inhibited by an Src inhibitor and by Csk. Significantly, Gab1PH-SHP2DeltaN induced Src activation. Gab1PH-SHP2DeltaN expression activated Ras, and the Gab1PH-SHP2DeltaN-induced Mek1 activation was blocked by RasN17. These findings suggest that Gab1PH-SHP2DeltaN activated a signaling step upstream of Src and Ras. The SHP2 tyrosine phosphatase activity is essential for the function of the fusion protein. Together, these data show that the Gab1 sequence, besides the PH domain and SHP2 binding sites, is dispensable for Erk activation, suggesting that the primary role of Gab1 association with an activated SHP2 is to target it to the membrane.  相似文献   

6.
Although Gbetagamma is thought to mediate mitogen-activated protein kinase (MAPK) activation in response to G protein-coupled receptor stimulation, the mechanisms involved in this pathway have not been clearly defined. Phosphoinositide 3-kinase (PI3K) has been proposed as an early intermediate in this process, but its role has remained elusive. We have observed that dominant negative mutants of p110beta, but not of p110gamma, inhibited MAPK stimulation in response to lysophosphatidic acid (LPA). The role of p110beta was located upstream from Ras. To determine which of the lipid or protein kinase activities of p110beta were important for Ras activation, we produced a mutant p110beta lacking the lipid but not the protein kinase activity. This protein displayed a dominant negative activity similar to a kinase-dead mutant, indicating that p110beta lipid kinase activity was essentially involved in Ras activation. In agreement, overexpression of the lipid phosphatase PTEN was found to specifically inhibit Ras stimulation induced by LPA. In addition, we have observed that the PH domain-containing adapter protein Gab1, which is involved in p110beta activation during LPA stimulation, is also implicated in this pathway downstream of p110beta. Indeed, both membrane redistribution and phosphorylation of Gab1 were reduced in the presence of PI3K inhibitors or dominant negative p110beta. Downstream of Gab1, the tyrosine phosphatase SHP2 was found to mediate Ras activation in response to LPA and to be recruited through PI3K and Gab1, because transfection of Gab1 mutant deficient for SHP2 binding inhibited Ras activation without interfering with PI3K activation. We conclude that LPA-induced Ras activation is mediated by a p110beta/Gab1/SHP2 pathway. Moreover, we present data indicating that p110beta is effectively the target of betagamma in this pathway, suggesting that the p110beta/Gab1/SHP2 pathway provides a novel link between betagamma and Ras by integrating two early events of LPA signaling, i.e. Gbetagamma release and tyrosine kinase receptor transactivation.  相似文献   

7.
Grb2-associated binder-1 (Gab1) is a docking protein closely related to insulin receptor substrates. We previously reported that tyrosine 1062 in RET receptor tyrosine kinase activated by glial cell line-derived neurotrophic factor (GDNF) represents a binding site for the Shc-Grb2-Gab1 complex, and that the p85 subunit of phosphatidylinositol 3-kinase (PI3K) and SHP2 tyrosine phosphatase is associated with Gab1 in GDNF-treated cells. In the present study, we further analyzed the physiological roles of Gab1 downstream of RET, using Gab1 mutants that lack the binding sites for PI3K (Gab1 PI3K-m) or SHP-2 (Gab1 SHP2-m). Expression of Gab1 PI3K-m in SK-N-MC human primitive neuroectodermal tumor cells expressing wild-type RET markedly impaired Akt phosphorylation, Rac1 activation, and lamellipodia formation that were induced by GDNF whereas expression of Gab1 SHP2-m partially impaired Erk activation. Furthermore, expression of Gab1 PI3K-m, but not Gab1 SHP2-m, in TT human medullary thyroid carcinoma cells expressing RET with a multiple endocrine neoplasia 2A mutation enhanced cytochrome c release, and apoptosis induced by etoposide, suggesting that PI3K is involved in survival of TT cells via a mitochondrial pathway. These findings demonstrated that coupling of Gab1 to PI3K is important for biological responses in RET-expressing cells.  相似文献   

8.
In primary rat hepatocyte cultures, activation of phosphatidylinositol 3-kinase is both necessary and sufficient to account for epidermal growth factor (EGF)-induced DNA synthesis. In these cells, three major p85-containing complexes were formed after EGF treatment: ErbB3-p85, Shc-p85, and a multimeric Gab2-Grb2-SHP2-p85, which accounted for more than 80% of total EGF-induced PI3K activity (Kong, M., C. Mounier, J. Wu, and B. I. Posner, J Biol Chem, 2000, 275:36035-36042). More recently, we found that EGF-dependent tyrosine phosphorylation of endogenous Gab2 is essential for EGF-induced DNA synthesis in rat hepatocytes. Here we show that, after EGF treatment, ErbB3-p85 and Shc-p85 complexes were localized to plasma membrane and endosomes, whereas the multimeric Gab2-Grb2-SHP2-p85 complex was formed rapidly (peak at 30 sec) and exclusively in cytosol. Western blotting of subcellular fractions from intact liver and immunofluorescence analyses in cultured hepatocytes demonstrated that EGF did not promote the association of cytosolic Gab2 with cell membranes. These observations prompted us to evaluate the role of the PH domain of Gab2 in regulating its function. Overexpression of the PH domain of Gab2 did not affect EGF-induced Gab2 phosphorylation, PI3K activation, and DNA synthesis. Overexpressed Gab2 lacking the PH domain (DeltaPHGab2) was comparable to wild-type Gab2 in respect to EGF-induced tyrosine phosphorylation, recruitment of p85, and DNA synthesis. In summary, after EGF stimulation, ErbB3, Shc, and Gab2 are differentially compartmentalized in rat liver, where they associate with and activate PI3K. Our data demonstrate that Gab2 mediates EGF-induced PI3K activation and DNA synthesis in a PH domain-independent manner.  相似文献   

9.
Tyrosine phosphorylation of Shc in response to B cell Ag receptor (BCR) engagement creates binding sites for the Src homology 2 (SH2) domain of Grb2. This facilitates the recruitment of both Grb2. Sos complexes and Grb2. SHIP complexes to the plasma membrane where Sos can activate Ras and SH2 domain-containing inositol phosphatase (SHIP) can dephosphorylate phosphatidylinositol 3,4,5-trisphosphate. Given the importance of Shc phosphorylation, we investigated the mechanism by which the BCR stimulates this response. We found that both the SH2 domain and phosphotyrosine-binding (PTB) domain of Shc are important for BCR-induced tyrosine phosphorylation of Shc and the subsequent binding of Grb2 to Shc. The unexpected finding that the PTB domain of Shc is required for Shc phosphorylation was investigated further. Because the major ligand for the Shc PTB domain is SHIP, we asked whether the interaction of Shc with SHIP was required for BCR-induced tyrosine phosphorylation of Shc. Using SHIP-deficient DT40 cells, we show that SHIP is necessary for the BCR to induce significant levels of Shc tyrosine phosphorylation. BCR-induced tyrosine phosphorylation of Shc could be restored in the these cells by expressing wild-type SHIP but not by expressing a mutant form of SHIP that cannot bind to Shc. This suggests that BCR-induced tyrosine phosphorylation of Shc may depend on the binding of SHIP to the Shc PTB domain. Thus, we have described a novel role for SHIP in BCR signaling, promoting the tyrosine phosphorylation of Shc.  相似文献   

10.
Although the mechanisms involved in the activation of mitogen-activated protein kinases (MAPK) by receptor tyrosine kinases do not display an obvious role for phosphoinositide 3-kinases (PI3Ks), we have observed in the nontransformed cell line Vero stimulated with epidermal growth factor (EGF) that wortmannin and LY294002 nearly abolished MAPK activation. The effect was observed under strong stimulation and was independent of EGF concentration. In addition, three mutants of class Ia PI3Ks were found to inhibit MAPK activation to an extent similar to their effect on Akt/protein kinase B activation. To determine the importance of PI3K lipid kinase activity in MAPK activation, we have used the phosphatase PTEN and the pleckstrin homology domain of Tec kinase. Overexpression of these proteins, but not control mutants, was found to inhibit MAPK activation, suggesting that the lipid products of class Ia PI3K are necessary for MAPK signaling. We next investigated the location of PI3K in the MAPK cascade. Pharmacological inhibitors and dominant negative forms of PI3K were found to block the activation of Ras induced by EGF. Upstream from Ras, although association of Grb2 with its conventional effectors was independent of PI3K, we have observed that the recruitment of the tyrosine phosphatase SHP2 required PI3K. Because SHP2 was also essential for Ras activation, this suggested the existence of a PI3K/SHP2 pathway leading to the activation of Ras. In addition, we have observed that the docking protein Gab1, which is involved in PI3K activation during EGF stimulation, is also implicated in this pathway downstream of PI3K. Indeed, the association of Gab1 with SHP2 was blocked by PI3K inhibitors, and expression of Gab1 mutant deficient for binding to SHP2 was found to inhibit Ras stimulation without interfering with PI3K activation. These results show that, in addition to Shc and Grb2, a PI3K-dependent pathway involving Gab1 and SHP2 is essential for Ras activation under EGF stimulation.  相似文献   

11.
12.
Upon the addition of different growth factors and cytokines, the Gab1 docking protein is tyrosine phosphorylated and in turn activates different signaling pathways. On the basis of the large body of evidence concerning cross talk between the signaling pathways activated by growth factors and oxidative stress, we decided to investigate the role of Gab1 in oxidative injury. We stimulated wild-type mouse embryo fibroblasts (MEF) or MEF with a homozygous deletion of the Gab1 gene (-/- MEF) with H(2)O(2). Our results show that Gab1 is phosphorylated in a dose- and time-dependent manner after H(2)O(2) triggering. Gab1 then recruits molecules such as SHP2, phosphatidylinositol 3-kinase (PI3K), and Shc. Gab1 phosphorylation is sensitive to the Src family kinase inhibitor PP2. Furthermore, we demonstrate that Gab1 is required for H(2)O(2)-induced c-Jun N-terminal kinase (JNK) activation but not for ERK2 or p38 activation. Reconstitution of Gab1 in -/- MEF rescues JNK activation, and we find that this is dependent on the SHP2 binding site in Gab1. Cell viability assays reveal that Gab1 has a dual role in cell survival: a positive one through its interaction with PI3K and a negative one through its interaction with SHP2. This is the first report identifying Gab1 as a component in oxidative stress signaling and one that is required for JNK activation.  相似文献   

13.
Phosphoinositide 3-kinase (PI3K) mediates essential functions of vascular endothelial growth factor (VEGF), including the stimulation of endothelial cell proliferation and migration. Nevertheless, the mechanisms coupling the receptor VEGFR-2 to PI3K remain obscure. We observed that the Grb2-bound adapter Gab1 is tyrosine-phosphorylated and relocated to membrane fractions upon VEGF stimulation of endothelial cells. We could detect the PI3K regulatory subunit p85 in immunoprecipitates of endogenous Gab1, and vice versa, and measure a Gab1-associated lipid kinase activity upon VEGF stimulation. Furthermore, transfection of the Gab1-YF3 mutant lacking all p85-binding sites strongly repressed PI3K activation measured in vitro. Moreover, Gab1-YF3 severely decreased the cellular amount of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generated in response to VEGF. Furthermore, adenoviral expression of Gab1-YF3 suppressed both Akt phosphorylation and recovery of wounded human umbilical vein endothelial cell monolayers, a VEGF-dependent process involving cell migration and proliferation under PI3K control. Transfection of other Gab1 mutants, lacking Grb2-binding sites or the pleckstrin homology (PH) domain, also prevented Akt activation, further demonstrating Gab1 involvement in PI3K activation. These mutants were also used to show that interactions with both Grb2 and PtdIns(3,4,5)P3 mediate Gab1 recruitment by VEGFR-2. Importantly, Gab1 mobilization was impaired by (i) PI3K inhibitors, (ii) deletion of Gab1 PH domain, (iii) PTEN (phosphatase and tensin homolog deleted on chromosome 10) overexpression to repress PtdIns(3,4,5)P3 production, and (iv) overexpression of a competitor PH domain for PtdIns(3,4,5)P3 binding, which altogether demonstrated that PI3K is also an upstream regulator of Gab1. Gab1 thus appears as a primary actor in coupling VEGFR-2 to PI3K/Akt, recruited through an amplification loop involving PtdIns(3,4,5)P3 and its PH domain.  相似文献   

14.
15.
Thrombopoietin (TPO) is a recently characterized member of the hematopoietic growth factor family that serves as the primary regulator of megakaryocyte (MK) and platelet production. The hormone acts by binding to the Mpl receptor, the product of the cellular proto-oncogene c-mpl. Although many downstream signaling targets of TPO have been identified in cell lines, primary MKs, and platelets, the molecular mechanism(s) by which many of these molecules are activated remains uncertain. In this report we demonstrate that the TPO-induced activation of phosphoinositol 3-kinase (PI3K), a signaling intermediate vital for cellular survival and proliferation, occurs through its association with inducible signaling complexes in both BaF3 cells engineered to express Mpl (BaF3/Mpl) and in primary murine MKs. Although a direct association between PI3K and Mpl could not be demonstrated, we found that several proteins, including SHP2, Gab2, and IRS2, undergo phosphorylation and association in BaF3/Mpl cells in response to TPO stimulation, complexes that recruit and enhance the enzymatic activity of PI3K. To verify the physiological relevance of the complex, SHP2-Gab2 association was disrupted by overexpressing a dominant negative SHP2 construct. TPO-induced Akt phosphorylation was significantly decreased in transfected cells suggesting an important role of SHP2 in the complex to enhance PI3K activity. In primary murine MKs, TPO also induced phosphorylation of SHP2, its association with p85 and enhanced PI3K activity, but in contrast to the results in cell lines, neither Gab2 nor IRS2 are phosphorylated in MKs. Instead, a 100-kDa tyrosine-phosphorylated protein (pp100) co-immunoprecipitated with the regulatory subunit of PI3K. These findings support a model where PI3K activity is dependent on its recruitment into TPO-induced multiphosphoprotein complexes, implicate the existence of a scaffolding protein in primary MKs distinct from the known Gab and IRS proteins, and suggest that, in contrast to erythroid progenitor cells that employ Gab1 in PI3K signaling complexes, utilization of an alternate member of the Gab/IRS family could be responsible for specificity in TPO signaling.  相似文献   

16.
17.
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.  相似文献   

18.
BCR signaling in naive B cells depends on the function of signalosome mediators; however, prior engagement of CD40 or of IL-4R produces an alternate signaling pathway in which Bruton's tyrosine kinase, PI3K, phospholipase Cgamma2, and protein kinase Cbeta are no longer required for BCR-induced downstream events. To explore the range of mediators capable of producing such an alternate pathway for BCR signaling, we examined the TLR4 agonist, LPS. B cell treatment with LPS at relatively low doses altered subsequent BCR signaling such that ERK phosphorylation and NF-kappaB activation occurred in a PI3K-independent manner. This effect of LPS extended to MEK phosphorylation and IkappaBalpha degradation, and it developed slowly over a period of 16-24 h. The involvement of TLRs is suggested by similar effects observed with a structurally distinct TLR agonist, PAM3CSK4 and by the need for MyD88 for induction of alternate BCR signaling by LPS. Thus, LPS-mediated TLR engagement produces an alternate pathway for BCR-triggered signal propagation that differs from the classical, signalosome-dependent pathway.  相似文献   

19.
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton.  相似文献   

20.
One mechanism used by receptor tyrosine kinases to relay a signal to different downstream effector molecules is to use adaptor proteins that provide docking sites for a variety of proteins. The daughter of sevenless (dos) gene was isolated in a genetic screen for components acting downstream of the Sevenless (Sev) receptor tyrosine kinase. Dos contains a N-terminally located PH domain and several tyrosine residues within consensus binding sites for a number of SH2 domain containing proteins. The structural features of Dos and experiments demonstrating tyrosine phosphorylation of Dos upon Sev activation suggested that Dos belongs to the family of multisite adaptor proteins that include the Insulin Receptor Substrate (IRS) proteins, Gab1, and Gab2. Here, we studied the structural requirements for Dos function in receptor tyrosine kinase mediated signaling processes by expressing mutated dos transgenes in the fly. We show that mutant Dos proteins lacking the putative binding sites for the SH2 domains of Shc, PhospholipaseC-γ (PLC-γ) and the regulatory subunit of Phosphoinositide 3-kinase (PI3-K) can substitute the loss of endogenous Dos function during development. In contrast, tyrosine 801, corresponding to a predicted Corkscrew (Csw) tyrosine phosphatase SH2 domain binding site, is essential for Dos function. Furthermore, we assayed whether the Pleckstrin homology (PH) domain is required for Dos function and localization. Evidence is provided that deletion or mutation of the PH domain interferes with the function but not with localization of the Dos protein. The Dos PH domain can be replaced by the Gab1 PH domain but not by a heterologous membrane anchor, suggesting a specific function of the PH domain in regulating signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号