首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.  相似文献   

2.
Black DJ  Persechini A 《Biochemistry》2011,50(46):10061-10068
We have investigated the roles played by the calmodulin (CaM) N- and C-lobes in establishing the conformations of CaM-IQ domain complexes in different Ca(2+)-free and Ca(2+)-bound states. Our results indicate a dominant role for the C-lobe in these complexes. When the C-lobe is Ca(2+)-free, it directs the N-lobe to a binding site within the IQ domain consensus sequence. It appears that the N-lobe must be Ca(2+)-free to interact productively with this site. When the C-lobe is Ca(2+)-bound, it directs the N-lobe to a site upstream of the consensus sequence, and it appears that the N-lobe must be Ca(2+)-bound to interact productively with this site. A model for switching in CaM-IQ domain complexes is presented in which the N-lobe adopts bound and extended positions that depend on the status of the Ca(2+)-binding sites in each CaM lobe and the compositions of the two N-lobe binding sites. Ca(2+)-dependent changes in the conformation of the bound C-lobe that appear to be responsible for directed N-lobe binding are also identified. Changes in the equilibria between extended and bound N-lobe positions may control bridging interactions in which the extended N-lobe is bound to another CaM-binding domain. Ca(2+)-dependent control of bridging interactions with CaM has been implicated in the regulation of ion channel and unconventional myosin activities.  相似文献   

3.
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.  相似文献   

4.
Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation.  相似文献   

5.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

6.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

7.
Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.  相似文献   

8.
Using interferometry-based biosensors the binding and release of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) from calmodulin (CaM) was measured. In both isoforms, binding to CaM is diffusion limited and within approximately three orders of magnitude of the Smoluchowski limit imposed by orientation-independent collisions. This suggests that the orientation of CaM is facilitated by the charge arrays on the CaM-binding site and the complementary surface on CaM. Protein kinase C phosphorylation of eNOS T495, adjacent to the CaM-binding site, abolishes or greatly slows CaM binding. Kinases which increase the activity of eNOS did not stimulate the binding of CaM, which is already diffusion limited. The coupling of Ca(2+) binding and CaM/NOS binding equilibria links the affinity of CaM for NOS to the Ca(2+) dependence of CaM binding. Hence, changes in the Ca(2+) sensitivity of CaM binding always imply changes in the NOS-CaM affinity. It is possible, however, that in some regimes binding and activation are not synonymous, so that Ca(2+) sensitivity need not be tightly linked to CaM sensitivity of activation. This study is being extended using mutants to probe the roles of individual structural elements in binding and release.  相似文献   

9.
10.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   

11.
The enzyme nitric oxide synthase (NOS) is exquisitely regulated in vivo by the Ca(2+) sensor protein calmodulin (CaM) to control production of NO, a key signaling molecule and cytotoxin. The differential activation of NOS isozymes by CaM has remained enigmatic, despite extensive research. Here, the crystallographic structure of Ca(2+)-loaded CaM bound to a 20 residue peptide comprising the endothelial NOS (eNOS) CaM-binding region establishes their individual conformations and intermolecular interactions, and suggests the basis for isozyme-specific differences. The alpha-helical eNOS peptide binds in an antiparallel orientation to CaM through extensive hydrophobic interactions. Unique NOS interactions occur with: (i). the CaM flexible central linker, explaining its importance in NOS activation; and (ii). the CaM C-terminus, explaining the NOS-specific requirement for a bulky, hydrophobic residue at position 144. This binding mode expands mechanisms for CaM-mediated activation, explains eNOS deactivation by Thr495 phosphorylation, and implicates specific hydrophobic residues in the Ca(2+) independence of inducible NOS.  相似文献   

12.
The discovery that plants contain multiple calmodulin (CaM) isoforms having variable sequence identity to mammalian CaM has sparked a flurry of new questions regarding the intracellular role of Ca(2+) regulation in plants. To date, the majority of research in this field has focused on the differential enzymatic regulation of various mammalian CaM-dependent enzymes by the different plant CaM isoforms. However, there is comparatively little information on the structural recognition of target enzymes found exclusively in plant cells. Here we have used a variety of spectroscopic techniques, including nuclear magnetic resonance, circular dichroism, and fluorescence spectroscopy, to study the interactions of the most conserved and most divergent CaM isoforms from soybean, SCaM-1, and SCaM-4, respectively, with a synthetic peptide derived from the CaM-binding domain of cauliflower vacuolar calcium-ATPase. Despite their sequence divergence, both SCaM-1 and SCaM-4 interact with the calcium-ATPase peptide in a similar calcium-dependent, stoichiometric manner, adopting an antiparallel binding orientation with an alpha-helical peptide. The single Trp residue is bound in a solvent-inaccessible hydrophobic pocket on the C-terminal domain of either protein. Thermodynamic analysis of these interactions using isothermal titration calorimetry demonstrates that the formation of each calcium-SCaM-calcium-ATPase peptide complex is driven by favorable binding enthalpy and is very similar to the binding of mammalian CaM to the CaM-binding domains of myosin light chain kinases and calmodulin-dependent protein kinase I.  相似文献   

13.
In plants, multiple calmodulin (CaM) isoforms exist in an organism which vary in their primary structures in as much as 32 residues out of their 148 amino acids. These CaM isoforms show differences in their expression patterns and/or target enzyme activation ability. To further understand the biological significance of CaM isoforms, we examined whether CaM isoforms act on specific regulatory targets. In gel overlay assays on various soybean tissue extracts, surprisingly, two soybean CaM isoforms (SCaM-1 and SCaM-4) did not show significant differences in their target binding protein profiles, although they exhibited minor differences in their relative target binding affinities. In addition, both SCaM isoforms not only effectively bound five known plant CaMBPs, but also showed competitive binding to these proteins. Finally, immunolocalization experiments with the SCaM proteins in sections of various tissues using specific antibodies revealed similar distribution patterns for the SCaM isoforms except for root tissues, which indicates that the SCaM isoforms are concomitantly expressed in most plant tissues. These results suggest that CaM isoforms may compete for binding to CaMBPs in vivo. This competitive nature of CaM isoforms may allow modulation of Ca(2+)/CaM signaling pathways by virtue of relative abundance and differential target activation potency.  相似文献   

14.
A cDNA (CAP1) isolated from maize roots shares sequence identity with genes encoding P-type Ca(2+)-ATPases and restores the growth phenotype of yeast mutants defective in Ca(2+)-pumps. CAP1 was transcribed and translated in the yeast mutant. Furthermore, the membrane-integrated product formed a Ca(2+)-dependent phosphorylated intermediate and supported Ca(2+) transport. Although CAP1 shares greater sequence identity with mammalian "endoplasmic reticulum-type" Ca(2+)-pumps, it differs from these genes by having features of calmodulin (CaM)-regulated Ca(2+)-pumps. CAP1 from yeast microsomes bound CaM, and the CAP1-dependent Ca(2+) transport in yeast was stimulated by CaM. Peptides from the C terminus of CAP1 bound CaM. Anti-CAP1 antibodies specifically recognized a maize microsomal polypeptide that also bound CaM. A similar polypeptide also formed a Ca(2+)-dependent phosphoenzyme. Our results suggest that cap1 encodes a novel form of CaM-regulated Ca(2+)-ATPase in maize. CAP1 appears to be encoded by one or two genes in maize. CAP1 RNA is induced only during early anoxia, indicating that the Ca(2+)-pump may play an important role in O(2)-deprived maize cells.  相似文献   

15.
Calmodulin (CaM) is a Ca2+ signal transducing protein that binds and activates many cellular enzymes with physiological relevance, including the mammalian nitric oxide synthase (NOS) isozymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). The mechanism of CaM binding and activation to the iNOS enzyme is poorly understood in part due to the strength of the bound complex and the difficulty of assessing the role played by regions outside of the CaM-binding domain. To further elucidate these processes, we have developed the methodology to investigate CaM binding to the iNOS holoenzyme and generate CaM mutant proteins selectively labeled with fluorescent dyes at specific residues in the N-terminal lobe, C-terminal lobe, or linker region of the protein. In the present study, an iNOS CaM coexpression system allowed for the investigation of CaM binding to the holoenzyme; three different mutant CaM proteins with cysteine substitutions at residues T34 (N-domain), K75 (central linker), and T110 (C-domain) were fluorescently labeled with acrylodan or Alexa Fluor 546 C5-maleimide. These proteins were used to investigate the differential association of each region of CaM with the three NOS isoforms. We have also N-terminally labeled an iNOS CaM-binding domain peptide with dabsyl chloride in order to perform FRET studies between Alexa-labeled residues in the N- and C-terminal domains of CaM to determine CaM's orientation when associated to iNOS. Our FRET results show that CaM binds to the iNOS CaM-binding domain in an antiparallel orientation. Our steady-state fluorescence and circular dichroism studies show that both the N- and C-terminal EF hand pairs of CaM bind to the CaM-binding domain peptide of iNOS in a Ca2+-independent manner; however, only the C-terminal domain showed large Ca2+-dependent conformational changes when associated with the target sequence. Steady-state fluorescence showed that Alexa-labeled CaM proteins are capable of binding to holo-iNOS coexpressed with nCaM, but this complex is a transient species and can be displaced with the addition of excess CaM. Our results show that CaM does not bind to iNOS in a sequential manner as previously proposed for the nNOS enzyme. This investigation provides additional insight into why iNOS remains active even under basal levels of Ca2+ in the cell.  相似文献   

16.
Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.  相似文献   

17.
Transient influx of Ca(2+) constitutes an early event in the signaling cascades that trigger plant defense responses. However, the downstream components of defense-associated Ca(2+) signaling are largely unknown. Because Ca(2+) signals are mediated by Ca(2+)-binding proteins, including calmodulin (CaM), identification and characterization of CaM-binding proteins elicited by pathogens should provide insights into the mechanism by which Ca(2+) regulates defense responses. In this study, we isolated a gene encoding rice Mlo (Oryza sativa Mlo; OsMlo) using a protein-protein interaction-based screening of a cDNA expression library constructed from pathogen-elicited rice suspension cells. OsMlo has a molecular mass of 62 kDa and shares 65% sequence identity and scaffold topology with barley Mlo, a heptahelical transmembrane protein known to function as a negative regulator of broad spectrum disease resistance and leaf cell death. By using gel overlay assays, we showed that OsMlo produced in Escherichia coli binds to soybean CaM isoform-1 (SCaM-1) in a Ca(2+)-dependent manner. We located a 20-amino acid CaM-binding domain (CaMBD) in the OsMlo C-terminal cytoplasmic tail that is necessary and sufficient for Ca(2+)-dependent CaM complex formation. Specific binding of the conserved CaMBD to CaM was corroborated by site-directed mutagenesis, a gel mobility shift assay, and a competition assay with a Ca(2+)/CaM-dependent enzyme. Expression of OsMlo was strongly induced by a fungal pathogen and by plant defense signaling molecules. We propose that binding of Ca(2+)-loaded CaM to the C-terminal tail may be a common feature of Mlo proteins.  相似文献   

18.
Tadross MR  Dick IE  Yue DT 《Cell》2008,133(7):1228-1240
Calmodulin (CaM) in complex with Ca(2+) channels constitutes a prototype for Ca(2+) sensors that are intimately colocalized with Ca(2+) sources. The C-lobe of CaM senses local, large Ca(2+) oscillations due to Ca(2+) influx from the host channel, and the N-lobe senses global, albeit diminutive Ca(2+) changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca(2+) sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca(2+) oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca(2+) release from CaM combined with greater affinity of the channel for Ca(2+)-free versus Ca(2+)-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca(2+) sources.  相似文献   

19.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

20.
Soybean calmodulin isoform 4 (sCaM4) is a plant calcium‐binding protein, regulating cellular responses to the second messenger Ca2+. We have found that the metal ion free (apo‐) form of sCaM4 possesses a half unfolded structure, with the N‐terminal domain unfolded and the C‐terminal domain folded. This result was unexpected as the apo‐forms of both soybean calmodulin isoform 1 (sCaM1) and mammalian CaM (mCaM) are fully folded. Because of the fact that free Mg2+ ions are always present at high concentrations in cells (0.5–2 mM), we suggest that Mg2+ should be bound to sCaM4 in nonactivated cells. CD studies revealed that in the presence of Mg2+ the initially unfolded N‐terminal domain of sCaM4 folds into an α‐helix‐rich structure, similar to the Ca2+ form. We have used the NMR backbone residual dipolar coupling restraints 1DNH, 1DCαHα, and 1DC′Cα to determine the solution structure of the N‐terminal domain of Mg2+‐sCaM4 (Mg2+‐sCaM4‐NT). Compared with the known structure of Ca2+‐sCaM4, the structure of the Mg2+‐sCaM4‐NT does not fully open the hydrophobic pocket, which was further confirmed by the use of the fluorescent probe ANS. Tryptophan fluorescence experiments were used to study the interactions between Mg2+‐sCaM4 and CaM‐binding peptides derived from smooth muscle myosin light chain kinase and plant glutamate decarboxylase. These results suggest that Mg2+‐sCaM4 does not bind to Ca2+‐CaM target peptides and therefore is functionally similar to apo‐mCaM. The Mg2+‐ and apo‐structures of the sCaM4‐NT provide unique insights into the structure and function of some plant calmodulins in resting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号